Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T09:39:45.615Z Has data issue: false hasContentIssue false

The activity of acyl CoA: retinol acyltransferase in the rat: variation with vitamin A status

Published online by Cambridge University Press:  09 March 2007

Magnhild Rasmussen
Affiliation:
Institute for Nutrition Research, School of Medicine, University of Oslo, PO Box 1046, Blindern, Oslo 3, Norway
Lizette B. Petersen
Affiliation:
Institute for Nutrition Research, School of Medicine, University of Oslo, PO Box 1046, Blindern, Oslo 3, Norway
Kaare R. Norum
Affiliation:
Institute for Nutrition Research, School of Medicine, University of Oslo, PO Box 1046, Blindern, Oslo 3, Norway
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Retinol esterification in the small intestine, liver and kidney of rats given a normal diet or a vitamin-A-free diet and of rats given large doses of vitamin A was studied. The active enzyme is a microsomal acyl CoA: retinol acyl transferase (ARAT).

2. In the small intestine ARAT activity was 0.37 nmol ester/mg microsomal protein per min. Large doses of vitamin A increased the activity significantly, while the enzyme activity in the vitamin-A-deficient rats was in the range of that of the controls. Retinoic acid in physiological doses (0.064 mg three times per week) had no influence on ARAT activity.

3. In the liver, ARAT activity of the controls was 0.58 nmol ester/mg microsomal protein per min. The activity was increased after large doses of vitamin A. It was not significantly reduced in vitamin-A-deficient animals.

4. The kidney had a low, but significant ARAT activity, both in normal and vitamin-A-deficient animals and after large doses of vitamin A (range 0.08–0.14 nmol ester/mg microsomal protein per min).

5. The vitamin-A-esterifying enzyme in the small intestine and liver of the rat seems to be influenced by the amount of retinol in the diet.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

Bieri, J. G., Tolliver, T. J. & Catignani, G. L. (1979). American Journal of Clinical Nutrition 32, 21432149.CrossRefGoogle Scholar
Blomhoff, R., Helgerud, P., Rasmussen, M., Berg, T. & Norum, K. R. (1982). Proceedings of the National Academy of Sciences, USA 79, 73267330.CrossRefGoogle Scholar
Bøyum, A., Berg, T. & Blomhoff, R. (1983). In Biological Separations in Iodinated Density Gradient Media, pp. 147174. [Rickwood, D., editor]. London: Information Retrieval Ltd.Google Scholar
Cama, H. R., Collins, F. D. & Morton, R. A. (1952). Biochemical Journal 50, 4860.CrossRefGoogle Scholar
Donoghue, S., Johnson, K., Donawich, W. J. & Sklan, D. (1981). Journal of Dairy Science 64, 24192421.CrossRefGoogle Scholar
Drevon, C. A., Lilljeqvist, A. C., Schreiner, B. & Norum, K. R. (1979). Atherosclerosis 34, 207219.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). Journal of Biological Chemistry 226, 497509.CrossRefGoogle Scholar
Glover, J., Jay, C. & White, G. H. (1974). In Vitamins and Hormones. Advances in Research and Applications, Vol. 32, pp. 224232. [Harris, R.S., Munson, P. L., Diczfalusy, E., Glover, J., editors]. New York: Academic Press.Google Scholar
Goodman, DeW. S. (1980). Federation Proceedings 39, 27162722.Google Scholar
Goodman, DeW. S. & Huang, H. S. (1965). Science 149, 879880.CrossRefGoogle Scholar
Goodman, DeW. S., Huang, H. S. & Shiratori, T. (1965). Journal of Lipid Research 6, 390396.CrossRefGoogle Scholar
Helgerud, P., Petersen, L. B. & Norum, K. R. (1982). Journal of Lipid Research 23, 609618.CrossRefGoogle Scholar
Helgerud, P., Petersen, L. B. & Norum, K. R. (1983). Journal of Clinical Investigation 71, 747753.CrossRefGoogle Scholar
High, H. G. (1954). Archives of Biochemistry and Biophysics 49, 1929.CrossRefGoogle Scholar
Hodges, J. L. Jr & Lehmann, E. L. (1964). Basic Concepts of Probability and Statistics, pp. 303311. San Francisco: Holden–Day Inc.Google Scholar
Huang, H. S. & Goodman, DeW. S. (1965). Journal of Biological Chemistry 240, 28392844.CrossRefGoogle Scholar
Lamb, A. J., Apiwatanatorn, P. & Olson, J. A. (1974). Journal of Nutrition 104, 11401148.CrossRefGoogle Scholar
Lowry, O. H., Rosenbrough, N. J., Farr, A. L. & Randall, R. J. (1951). Journal of Biological Chemistry 193,265275.CrossRefGoogle Scholar
Mahadevan, S., Seshadri Sastry, P. & Ganguly, J. (1963 a). Biochemical Journal 88, 531534.CrossRefGoogle Scholar
Mahadevan, S., Seshadri Sastry, P. & Ganguly, J. (1963 b). Biochemical Journal 88, 534539.CrossRefGoogle Scholar
Moore, T. (1957 a). Vitamin A, pp. 4250. Amsterdam: Elsevier Publishing Company.Google Scholar
Moore, T. (1957 b). Vitamin A, pp. 3438. Amsterdam: Elsevier Publishing Company.Google Scholar
Nakano, K. & Morita, A. (1982). British Journal of Nutrition 47, 645652.CrossRefGoogle Scholar
Norum, K. R., Lilljeqvist, A. C. & Drevon, C. A. (1977). Scandinavian Journal of Gastroenterology 12, 281288.CrossRefGoogle Scholar
Norum, K. R., Helgerud, P., Petersen, L. B., Groot, P. H. E. & de Jonge, H. R. (1983). Biochimica et Biophysica Acta 751, 153161.CrossRefGoogle Scholar
Olson, J. A. (1961). Journal of Biological Chemistry 236, 349356.CrossRefGoogle Scholar
Peterson, P. A., Rask, L., Östberg, L., Anderson, L., Kamwendo, F. & Pertoft, H. (1973). Journal of Biological Chemistry 248, 40094022.CrossRefGoogle Scholar
Ross, A. C. (1981). Analytical Biochemistry 115, 324330.CrossRefGoogle Scholar
Ross, A. C. (1982 a). Journal of Biological Chemistry 257, 24532459.CrossRefGoogle Scholar
Ross, A. C. (1982 b). Journal of Lipid Research 23, 133144.CrossRefGoogle Scholar
Vahlqvist, A. (1972). Scandinavian Journal of Clinical and Labortory Investigation 30, 349360.CrossRefGoogle Scholar
Wolf, G. (1980). In Human Nutrition, Vol. 3B, pp. 97203. [Alfin–Slater, R.B. and Kritchevsky, D., editors]. New York: Plenum Press.Google Scholar