Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T08:03:13.293Z Has data issue: false hasContentIssue false

Acid-base balance in ruminating calves given sodium hydroxide-treated straw

Published online by Cambridge University Press:  24 July 2007

Søren Wamberg
Affiliation:
Departments of 1Physiology, Odense University Medical School, DK-5230 Odense M, Denmark
Knud Engel
Affiliation:
Departments of 2Clinical Chemistry, Odense University Medical School, DK-5230 Odense M, Denmark
Peter Stigsen
Affiliation:
Department of Animal Physiology and Chemistry, National Institute of Animal Science, DK-1958 Copenhagen, Denmark
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Studies of whole-body balances of non-metabolizable base (NB) and several minerals, and of relevant acid-base quantities in blood and urine, were carried out in two 6-month-old ruminating Holstein × Friesian bull calves fed on fixed rations containing 500 g barley straw/kg diet (group A) to examine the quantitatively important components of the balance of NB and determine the rates of mineral and NB retention associated with normal body growth.

2. Parallel balance studies were conducted in six other bull calves given fixed rations containing 500 g alkali-treated barley straw/kg diet to evaluate the effects of long-term alkali-straw feeding on the rates of body growth and skeletal mineral and NB deposition and the renal control of extracellular electrolyte and acid-base status. The straw component was treated either with 50 g sodium hydroxide/kg dry matter (DM) (group B; two calves), or with 50 g or 100 g NaOH/kg DM and subsequently neutralized with hydrochloric acid (groups C and D; two calves per group). In all groups the animals were given free access to tap water.

3. Throughout the total 105 d experiment, all animals remained healthy and gained weight. Normal body growth (group A) was associated with a positive balance of NB (1–2 mmol/kg live weight (LW) per d) due to continuing deposition of dietary NB in ‘new tissue’, largely in the developing skeleton.

4. During 105 d alkali-straw feeding, the animals showed a remarkable ability to cope with dietary loads of NaOH or sodium chloride, up to about 30 mmol/kg LW per d, without any significant disturbance of extracellular acid-base and electrolyte status or body growth rate. The surplus mineral and NB loads were absorbed and subsequently excreted in an increased volume of urine. Rates of mineral and NB retention were not significantly different from the reference values of group A and remained within the range of values reported from similar studies. In all groups, maintenance of normal whole blood and plasma acid-base and electrolyte status was accounted for by efficient renal control of the composition of the extracellular fluid compartment.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Anderson, R. R. & Mixner, J. P. (1960). Journal of Dairy Science 43, 14761479.CrossRefGoogle Scholar
Baker, R. J. & Nelder, J. A. (1978). The GLIM System: Generalised Linear Interactive Modelling, Release 3. London: Royal Statistical Society.Google Scholar
Bhattacharya, A. N. & Warner, R. G. (1968). Journal of Animal Science 27, 14181425.CrossRefGoogle Scholar
Brouwer, E. (1935). Tierernährung 7, 463495.Google Scholar
Coombe, J. B., Dinius, D. A. & Wheeler, W. E. (1979). Journal of Animal Science 49, 169176.CrossRefGoogle Scholar
Dobson, A. (1980). In Scientific Foundations of Veterinary Medicine, pp. 112125. [Phillipson, A. T., Hall, L. W. and Pritchard, W. R., editors]. London: Heinemann Medical Books Ltd.Google Scholar
Duncan, D. L. (1958). Nutrition Abstracts and Reviews 28, 695715.Google Scholar
Ellenberger, H. B., Newlander, J. A. & Jones, C. H. (1950). Vermont Agricultural Experiment Station Bulletin no. 558, pp. 166.Google Scholar
Engel, K. & Kildeberg, P. (1977). Scandinavian Journal of Clinical & Laboratory Investigation 37, Suppl. 146, 2126.CrossRefGoogle Scholar
Forbes, E. B. (1909). Ohio Agricultural Experiment Station Bulletin no. 207, pp. 2352.Google Scholar
Friis Kristensen, V., Andersen, P. E., Stigsen, P., Vestergaard Thomsen, K., Andersen, H. R., Sørensen, M., Ali, C. S., Mason, V. C., Rexen, F., Israelsen, M. & Wolstrup, J. (1978). National Institute of Animal Science Report no. 464, pp 1218.Google Scholar
Gyrd-Hansen, N. (1972). Studies on salt poisoning in pigs. PhD Thesis, The Royal Veterinary and Agricultural University, Copenhagen.Google Scholar
Hills, A. G. (1973). Acid-Base Balance. Chemistry, Physiology, Pathophysiology. Baltimore: Williams & Wilkins Co.Google Scholar
Jackson, M. G. (1977). Animal Feed Science and Technology 2, 105130.CrossRefGoogle Scholar
Jørgensen, K. (1957). Scandinavian Journal of Clinical & Laboratory Investigation 9, 287291.CrossRefGoogle Scholar
Kellaway, R. C., Thomson, D. J., Beever, D. E. & Osboum, D. F. (1977). Journal of Agricultural Science 88, 19.CrossRefGoogle Scholar
Kildeberg, P. (1981). Quantitative Acid-Base Physiology. System Physiology and Pathophysiology of Renal, Gastrointestinal, and Skeletal Acid-Base Metabolism. Odense: Odense University Press. New York and Tokyo: Igaku-Shoin Medical Publishers.Google Scholar
Kildeberg, P. (1983). Scandinavian Journal of Clinical & Laboratory Investigation 43, 103109.CrossRefGoogle Scholar
Kildeberg, P. & Winters, R. W. (1978). In Advances in Pediatrics vol. 25, pp. 349381. [Barnes, L. A., editor]. New York: Year Book Medical Publishers Inc.Google Scholar
McSherry, B. J. & Grinyer, I. (1954). American Journal of Veterinary Research 15, 509510.Google Scholar
Mason, G. D. & Scott, D. (1974). Quarterly Journal of Experimental Physiology 59, 103112.CrossRefGoogle Scholar
Medway, W. & Kare, M. R. (1959). Cornell Veterinarian 49, 241251.Google Scholar
Meyer, J. H., Weir, W. C., Ittner, N. R. & Smith, J. D. (1955). Journal of Animal Science 14, 412418.CrossRefGoogle Scholar
Nelson, A. B., MacVicar, R. W., Archer, Wm. Jr & Meiske, J. C. (1955). Journal of Animal Science 14, 825830.CrossRefGoogle Scholar
Oloade, B. G. & Mowat, D. N. (1975). Journal of Animal Science 40, 351357.CrossRefGoogle Scholar
Potter, B. J. (1961). Australian Journal of Agricultural Research 12, 440445.CrossRefGoogle Scholar
Potter, B. J. (1963). Australian Journal of Agricultural Research 14, 518528.CrossRefGoogle Scholar
Rexen, F. & Vestergaard Thomsen, K. (1976). Animal Feed Science and Technology 1, 7383.CrossRefGoogle Scholar
Saxena, S. K., Otterby, D. E., Donker, J. D. & Good, A. L. (1971). Journal of Animal Science 33, 485490.CrossRefGoogle Scholar
Shohl, A. T. & Sato, A. (1923). Journal of Biological Chemistry 58, 235255.CrossRefGoogle Scholar
Siggaard-Andersen, O. (1974). The Acid-Base Status of the Blood, 4th revised ed. Copenhagen: Munksgaard. Baltimore: Williams & Wilkins Co.Google Scholar
Singh, M. & Jackson, M. G. (1971). Journal of Agricultural Science, Cambridge 77, 510.CrossRefGoogle Scholar
Sriskandarajah, N. & Kellaway, R. C. (1984). British Journal of Nutrition 51, 289296.CrossRefGoogle Scholar
Stigsen, P. (1975). Kulhydratkildens og neutralisationens betydning for udnyttelse af natriumhydroxydbehandlet halm hos malkekøer. PhD Thesis, The Royal Veterinary and Agricultural University, Copenhagen.Google Scholar
Thorbek, G. (1980). National Institute of Animal Science Report no. 498 (Denmark), pp. 1104 (in English).Google Scholar
Voigt, J. & Piatkowski, B. (1974). Archiv für Tierernährung 24, 589600.CrossRefGoogle Scholar
Wamberg, S., Engel, K. & Kildeberg, P. (1983). Scandinavian Journal of Clinical & Laboratory Investigation 43, 7383.CrossRefGoogle Scholar
Wamberg, S., Hansen, A. C., Engel, K. & Kildeberg, P. (1978). Biology of the Neonate 34, 2431.CrossRefGoogle Scholar
Wamberg, S., Kildeberg, P. & Engel, K. (1976 a). Biology of the Neonate 28, 160170.CrossRefGoogle Scholar
Wamberg, S., Kildeberg, P. & Engel, K. (1976 b). Biology of the Neonate 28, 171190.CrossRefGoogle Scholar
Weeth, H. J. & Haverland, L. H. (1961). Journal of Animal Science 20, 518521.CrossRefGoogle Scholar
Weeth, H. J. & Lesperance, A. L. (1965). Journal of Animal Science 24, 441447.CrossRefGoogle Scholar