Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-04-25T23:40:47.881Z Has data issue: false hasContentIssue false

Exploring the impact of caloric restriction on molecular mechanisms of liver damage induced by sucrose intake in the drinking water

Published online by Cambridge University Press:  11 November 2024

Morena Wiszniewski
Affiliation:
CONICET – Universidad de Buenos Aires. Centro de Estudios Farmacológicos y Botánicos (CEFYBO). Laboratorio de Endocrinología Molecular, Buenos Aires, Argentina Universidad de Buenos Aires. Facultad de Odontología. Cátedra de Bioquímica y Biología Bucal, Buenos Aires, Argentina
Lilian Caldareri
Affiliation:
CONICET – Universidad de Buenos Aires. Centro de Estudios Farmacológicos y Botánicos (CEFYBO). Laboratorio de Endocrinología Molecular, Buenos Aires, Argentina
Diego Mori
Affiliation:
CONICET – Universidad de Buenos Aires. Centro de Estudios Farmacológicos y Botánicos (CEFYBO). Laboratorio de Endocrinología Molecular, Buenos Aires, Argentina
Camila Martinez Calejman
Affiliation:
CONICET – Universidad de Buenos Aires. Centro de Estudios Farmacológicos y Botánicos (CEFYBO). Laboratorio de Endocrinología Molecular, Buenos Aires, Argentina
Cora B. Cymeryng
Affiliation:
CONICET – Universidad de Buenos Aires. Centro de Estudios Farmacológicos y Botánicos (CEFYBO). Laboratorio de Endocrinología Molecular, Buenos Aires, Argentina Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana. Cátedra de Bioquímica Humana I, Buenos Aires, Argentina
Esteban M. Repetto*
Affiliation:
CONICET – Universidad de Buenos Aires. Centro de Estudios Farmacológicos y Botánicos (CEFYBO). Laboratorio de Endocrinología Molecular, Buenos Aires, Argentina Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Bioquímica Clínica. Cátedra de Bioquímica Clínica I, Buenos Aires, Argentina
*
Corresponding author: Esteban M. Repetto; Email: [email protected]

Abstract

A positive association has been demonstrated between consumption of sucrose-sweetened beverages and the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD). Since the administration of 30 % sucrose in the drinking water (sucrose-rich diet (SRD)) to rats has proven to be a good model of systemic insulin resistance, the aim of our study was to analyse the effect of caloric restriction applied on SRD-treated rats by switching back to a standard diet, on liver morphology, function and metabolism. Consumption of an SRD causes a metabolic shift towards gluconeogenesis and fatty acid synthesis leading to an increase in TAG levels in plasma and in the liver that were associated with a decrease in insulin sensitivity. Moreover, our results show that animals fed an SRD develop steatohepatitis characterised by the generation of oxidative stress, endoplasmic reticulum (ER) stress, inflammation and apoptosis. Although no histological changes were observed after a 2-week caloric restriction, key pathways associated with the progression of MASLD as inflammation, ER stress and apoptosis were slowed down. Notably, this 2-week intervention also increased liver insulin sensitivity (evaluated by AKT activity in this tissue) and drove the lipid metabolic profile towards oxidation, thus lowering circulating TAG levels. In summary, the present study uncovers underlying mechanisms affected, and their metabolic consequences, during the first stages of the phenotypic reversal of steatohepatitis by switching back to a standard diet after receiving sucrose-sweetened water for several weeks.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Younossi, ZM, Koenig, AB, Abdelatif, D, et al. (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64, 7384.CrossRefGoogle Scholar
Rinella, ME, Lazarus, JV, Ratziu, V, et al. (2023) A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol 79, 15421556.CrossRefGoogle ScholarPubMed
Younossi, Z, Tacke, F, Arrese, M, et al. (2019) Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 69, 26722682.CrossRefGoogle ScholarPubMed
Liu, J, Ayada, I, Zhang, X, et al. (2022) Estimating global prevalence of metabolic dysfunction-associated fatty liver disease in overweight or obese adults. Clin Gastroenterol Hepatol 20, e573e582.CrossRefGoogle ScholarPubMed
Chhimwal, J, Patial, V & Padwad, Y (2021) Beverages and Non-alcoholic Fatty Liver Disease (NAFLD): think before you drink. Clin Nutr 40, 25082519.CrossRefGoogle ScholarPubMed
Malik, VS, Popkin, BM, Bray, GA, et al. (2010) Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33, 24772483.CrossRefGoogle ScholarPubMed
Fisberg, M, Kovalskys, I, Gómez, G, et al. (2018) Total and added sugar intake: assessment in eight Latin American countries. Nutrients 10, 389.CrossRefGoogle ScholarPubMed
Malik, VS & Hu, FB (2022) The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases. Nat Rev Endocrinol 18, 205218.CrossRefGoogle ScholarPubMed
Chen, H, Wang, J, Li, Z, et al. (2019) Consumption of sugar-sweetened beverages has a dose-dependent effect on the risk of non-alcoholic fatty liver disease: an updated systematic review and dose-response meta-analysis. Int J Environ Res Public Health 16, 113.Google Scholar
Henkel, A (2018) Unfolded protein response sensors in hepatic lipid metabolism and nonalcoholic fatty liver disease. Semin Liver Dis 38, 320332.Google ScholarPubMed
Henkel, A & Green, R (2013) The unfolded protein response in fatty liver disease. Semin Liver Dis 33, 321329.Google ScholarPubMed
Spahis, S, Delvin, E, Borys, J-M, et al. (2017) Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis. Antioxid Redox Signal 26, 519541.CrossRefGoogle ScholarPubMed
Bessone, F, Razori, MV & Roma, MG (2019) Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci 76, 99128.CrossRefGoogle ScholarPubMed
Ota, T (2021) Molecular mechanisms of Nonalcoholic Fatty Liver Disease (NAFLD)/Nonalcoholic Steatohepatitis (NASH). Profilakticheskaya Meditsina 1261, 223229.Google ScholarPubMed
Tilg, H & Moschen, AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52, 18361846.CrossRefGoogle Scholar
Santos-Laso, A, Gutiérrez-Larrañaga, M, Alonso-Peña, M, et al. (2021) Pathophysiological mechanisms in non-alcoholic fatty liver disease: from drivers to targets. Biomedicines 10, 46.CrossRefGoogle ScholarPubMed
Oliveira, LSC, Santos, DA, Barbosa-da-Silva, S, et al. (2014) The inflammatory profile and liver damage of a sucrose-rich diet in mice. J Nutr Biochem 25, 193200.CrossRefGoogle Scholar
Mercau, ME, Calanni, JS, Aranda, ML, et al. (2019) Melatonin prevents early pituitary dysfunction induced by sucrose-rich diets. J Pineal Res 66, e12545.CrossRefGoogle ScholarPubMed
Kleiner, DE, Brunt, EM, Van Natta, M, et al. (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 13131321.CrossRefGoogle ScholarPubMed
Repetto, EM, Wiszniewski, M, Bonelli, AL, et al. (2019) Impaired HPA axis function in diabetes involves adrenal apoptosis and phagocytosis. Endocrine 63, 602614.CrossRefGoogle ScholarPubMed
Pfaffl, MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45.CrossRefGoogle ScholarPubMed
Marušić, M, Paić, M, Knobloch, M, et al. (2021) NAFLD, insulin resistance, and diabetes mellitus type 2. Can J Gastroenterol Hepatol 2021, 6613827.CrossRefGoogle ScholarPubMed
Li, Y, Yang, P, Ye, J, et al. (2024) Updated mechanisms of MASLD pathogenesis. Lipids Health Dis 23, 117.CrossRefGoogle ScholarPubMed
Chhimwal, J, Patial, V & Padwad, Y (2021) Beverages and Non-alcoholic Fatty Liver Disease (NAFLD): think before you drink. Clin Nutr 40, 25082519.CrossRefGoogle ScholarPubMed
Chen, H, Wang, J, Li, Z, et al. (2019) Consumption of sugar-sweetened beverages has a dose-dependent effect on the risk of non-alcoholic fatty liver disease: an updated systematic review and dose-response meta-analysis. Int J Environ Res Public Health 16, 113.Google Scholar
Wijarnpreecha, K, Thongprayoon, C, Edmonds, PJ, et al. (2016) Associations of sugar- and artificially sweetened soda with nonalcoholic fatty liver disease: a systematic review and meta-analysis. QJM 109, 461466.CrossRefGoogle ScholarPubMed
Bertola, A (2018) Rodent models of fatty liver diseases. Liver Res 2, 313.CrossRefGoogle Scholar
Hansen, HH, Feigh, M, Veidal, SS, et al. (2017) Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov Today 22, 17071718.CrossRefGoogle ScholarPubMed
Cole, BK, Feaver, RE, Wamhoff, BR, et al. (2018) Non-alcoholic fatty liver disease (NAFLD) models in drug discovery. Expert Opin Drug Discov 13, 193205.CrossRefGoogle ScholarPubMed
Basaranoglu, M, Basaranoglu, G & Bugianesi, E (2015) Carbohydrate intake and nonalcoholic fatty liver disease: fructose as a weapon of mass destruction. Hepatobiliary Surg Nutr 4, 109116.Google ScholarPubMed
Ryan, MC, Abbasi, F, Lamendola, C, et al. (2007) Serum alanine aminotransferase levels decrease further with carbohydrate than fat restriction in insulin-resistant adults. Diabetes Care 30, 10751080.CrossRefGoogle ScholarPubMed
Chen, SY, Beretta, M, Olzomer, EM, et al. (2024) Head-to-head comparison of BAM15, semaglutide, rosiglitazone, NEN, and calorie restriction on metabolic physiology in female db/db mice. Biochim Biophys Acta Mol Basis Dis 1870, 166908.CrossRefGoogle ScholarPubMed
Lorch, CM, Hayes, NW, Xia, JL, et al. (2024) Sucrose overconsumption impairs AgRP neuron dynamics and promotes palatable food intake. Cell Rep 43, 113675.CrossRefGoogle ScholarPubMed
Oliva, L, Alemany, M, Remesar, X, et al. (2019) The food energy/protein ratio regulates the rat urea cycle but not total nitrogen losses. Nutrients 11, 112.CrossRefGoogle Scholar
Martinez Calejman, C, Di Gruccio, JM, Mercau, ME, et al. (2012) Insulin sensitization with a peroxisome proliferator-activated receptor γ agonist prevents adrenocortical lipid infiltration and secretory changes induced by a high-sucrose diet. J Endocrinol 214, 267276.CrossRefGoogle ScholarPubMed
Zago, V, Lucero, D, Macri, EV, et al. (2010) Circulating very-low-density lipoprotein characteristics resulting from fatty liver in an insulin resistance rat model. Ann Nutr Metab 56, 198206.CrossRefGoogle Scholar
Jensen, T, Abdelmalek, MF, Sullivan, S, et al. (2018) Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol 68, 10631075.CrossRefGoogle Scholar
Fukunishi, S, Nishio, H, Fukuda, A, et al. (2010) Long-term feeding of a synthetic diet rich in disaccharides induces hepatic fibrosis in nonalcoholic fatty liver disease in Zucker rats. Int J Mol Med 25, 187193.Google Scholar
Pompili, S, Vetuschi, A, Gaudio, E, et al. (2020) Long-term abuse of a high-carbohydrate diet is as harmful as a high-fat diet for development and progression of liver injury in a mouse model of NAFLD/NASH. Nutrition 75–76, 110782.CrossRefGoogle Scholar
Ferro, D, Baratta, F, Pastori, D, et al. (2020) New insights into the pathogenesis of non-alcoholic fatty liver disease: gut-derived lipopolysaccharides and oxidative stress. Nutrients 12, 114.CrossRefGoogle ScholarPubMed
Muriel, P, López-Sánchez, P & Ramos-Tovar, E (2021) Fructose and the liver. Int J Mol Sci 22, 6969.CrossRefGoogle ScholarPubMed
Chen, Z, Tian, R, She, Z, et al. (2020) Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med 152, 116141.CrossRefGoogle ScholarPubMed
Alisi, A, Carpino, G, Oliveira, FL, et al. (2017) The role of tissue macrophage-mediated inflammation on NAFLD pathogenesis and its clinical implications. Mediators Inflamm 2017, 115.CrossRefGoogle ScholarPubMed
Liu, X, Wang, Y, Ming, Y, et al. (2015) S100A9: a potential biomarker for the progression of non-alcoholic fatty liver disease and the diagnosis of non-alcoholic steatohepatitis. PLoS One 10, e0127352.CrossRefGoogle ScholarPubMed
Serhal, R, Hilal, G, Boutros, G, et al. (2015) Nonalcoholic steatohepatitis: involvement of the telomerase and proinflammatory mediators. Biomed Res Int 2015, 850246.CrossRefGoogle ScholarPubMed
Balakumar, M, Raji, L, Prabhu, D, et al. (2016) High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Mol Cell Biochem 423, 93104.CrossRefGoogle ScholarPubMed
Fernandes-da-Silva, A, Miranda, CS, Santana-Oliveira, DA, et al. (2021) Endoplasmic reticulum stress as the basis of obesity, metabolic diseases: focus on adipose tissue, liver, pancreas. Eur J Nutr 60, 29492960.CrossRefGoogle Scholar
Duvigneau, JC, Luís, A, Gorman, AM, et al. (2019) Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases. Cytokine 124, 154577.CrossRefGoogle ScholarPubMed
Hetz, C, Zhang, K & Kaufman, RJ (2020) Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21, 421438.CrossRefGoogle ScholarPubMed
Zeeshan, HMA, Lee, GH, Kim, H-R, et al. (2016) Endoplasmic reticulum stress and associated ROS. Int J Mol Sci 17, 327.CrossRefGoogle ScholarPubMed
Duvigneau, JC, Luís, A, Gorman, AM, et al. (2019) Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases. Cytokine 124, 154577.CrossRefGoogle ScholarPubMed
Chan, JY, Cooney, GJ, Biden, TJ, et al. (2011) Differential regulation of adaptive and apoptotic unfolded protein response signalling by cytokine-induced nitric oxide production in mouse pancreatic beta cells. Diabetologia 54, 17661776.CrossRefGoogle ScholarPubMed
Kandel-Kfir, M, Almog, T, Shaish, A, et al. (2015) Interleukin-1α deficiency attenuates endoplasmic reticulum stress-induced liver damage and CHOP expression in mice. J Hepatol 63, 926933.CrossRefGoogle ScholarPubMed
Luci, C, Bourinet, M, Leclère, PS, et al. (2020) Chronic inflammation in non-alcoholic steatohepatitis: molecular mechanisms and therapeutic strategies. Front Endocrinol (Lausanne) 11, 114.CrossRefGoogle ScholarPubMed
Kazankov, K, Jørgensen, SMD, Thomsen, KL, et al. (2019) The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 16, 145159.CrossRefGoogle ScholarPubMed
Yang, B, Luo, W, Wang, M, et al. (2022) Macrophage-specific MyD88 deletion and pharmacological inhibition prevents liver damage in non-alcoholic fatty liver disease via reducing inflammatory response. Biochim Biophys Acta Mol Basis Dis 1868, 166480.CrossRefGoogle ScholarPubMed
Softic, S, Stanhope, KL, Boucher, J, et al. (2020) Fructose and hepatic insulin resistance. Crit Rev Clin Lab Sci 57, 308322.CrossRefGoogle ScholarPubMed
Johnson, RJ, Perez-Pozo, SE, Sautin, YY, et al. (2009) Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev 30, 96116.CrossRefGoogle ScholarPubMed
Rutledge, AC & Adeli, K (2007) Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr Rev 65, 1323.CrossRefGoogle ScholarPubMed
Szablewski, L (2024) Changes in cells associated with insulin resistance. Int J Mol Sci 25, 2397.CrossRefGoogle ScholarPubMed
Geidl-Flueck, B & Gerber, PA (2023) Fructose drives de novo lipogenesis affecting metabolic health. J Endocrinol 257, e220270.CrossRefGoogle ScholarPubMed
Wang, Y, Viscarra, J, Kim, S-J, et al. (2015) Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol 16, 678689.CrossRefGoogle ScholarPubMed
Ortega-Prieto, P & Postic, C (2019) Carbohydrate sensing through the transcription factor ChREBP. Front Genet 10, 472.CrossRefGoogle ScholarPubMed
Daniel, PV, Dogra, S, Rawat, P, et al. (2021) NF-κB p65 regulates hepatic lipogenesis by promoting nuclear entry of ChREBP in response to a high carbohydrate diet. J Biol Chem 296, 100714.CrossRefGoogle ScholarPubMed
Wang, Y, Nakajima, T, Gonzalez, FJ, et al. (2020) PPARs as metabolic regulators in the liver: lessons from liver-specific PPAR-null mice. Int J Mol Sci 21, 2061.CrossRefGoogle ScholarPubMed
Bougarne, N, Weyers, B, Desmet, SJ, et al. (2018) Molecular actions of PPARα in lipid metabolism and inflammation. Endocr Rev 39, 760802.CrossRefGoogle ScholarPubMed
Fang, C, Pan, J, Qu, N, et al. (2022) The AMPK pathway in fatty liver disease. Front Physiol 13, 970292.CrossRefGoogle ScholarPubMed
Cantó, C & Auwerx, J (2011) Calorie restriction: is AMPK a key sensor and effector? Physiol 26, 214224.CrossRefGoogle ScholarPubMed
Karagöz, MF & Gülçin Sağdıçoğlu Celep, A (2023) The effect of caloric restriction on genetical pathways. Food Sci Hum Wellness 12, 14501457.CrossRefGoogle Scholar
Ipsen, DH, Lykkesfeldt, J & Tveden-Nyborg, P (2018) Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci 75, 33133327.CrossRefGoogle ScholarPubMed
Liu, J, Yang, P, Zuo, G, et al. (2018) Long-chain fatty acid activates hepatocytes through CD36 mediated oxidative stress. Lipids Health Dis 17, 19.CrossRefGoogle ScholarPubMed
Rada, P, González-Rodríguez, Á, García-Monzón, C, et al. (2020) Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis 11, 802.CrossRefGoogle ScholarPubMed
Pawlak, M, Lefebvre, P & Staels, B (2015) Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol 62, 720733.CrossRefGoogle ScholarPubMed
Supplementary material: File

Wiszniewski et al. supplementary material 1

Wiszniewski et al. supplementary material
Download Wiszniewski et al. supplementary material 1(File)
File 78.6 KB
Supplementary material: File

Wiszniewski et al. supplementary material 2

Wiszniewski et al. supplementary material
Download Wiszniewski et al. supplementary material 2(File)
File 1.9 MB