Hostname: page-component-669899f699-b58lm Total loading time: 0 Render date: 2025-05-02T15:58:21.604Z Has data issue: false hasContentIssue false

Erythrocyte membrane and breast milk fatty acid profile in lactating mothers: relationship with infant erythrocyte membrane fatty acid profile

Published online by Cambridge University Press:  11 October 2024

Silvana Visentin*
Affiliation:
IDIP – Instituto de Desarrollo e Investigaciones Pediátricas ‘Prof. Dr. Fernando E. Viteri’ (Hospital de Niños ‘Sor María Ludovica’ de La Plata, Ministerio de Salud/Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), Calle 63 N° 1069 (1900) La Plata, Argentina Cátedra de Posgrado de Nutrición Humana de la Facultad de Ciencias Médicas de la Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
Agustina Malpeli
Affiliation:
IDIP – Instituto de Desarrollo e Investigaciones Pediátricas ‘Prof. Dr. Fernando E. Viteri’ (Hospital de Niños ‘Sor María Ludovica’ de La Plata, Ministerio de Salud/Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), Calle 63 N° 1069 (1900) La Plata, Argentina
Victoria Fasano
Affiliation:
IDIP – Instituto de Desarrollo e Investigaciones Pediátricas ‘Prof. Dr. Fernando E. Viteri’ (Hospital de Niños ‘Sor María Ludovica’ de La Plata, Ministerio de Salud/Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), Calle 63 N° 1069 (1900) La Plata, Argentina Departamento de Matemática, Facultad Ciencias Exactas, Universidad Nacional de La Plata, Calle 115 s/n, La Plata, Argentina
Marisa Sala
Affiliation:
IDIP – Instituto de Desarrollo e Investigaciones Pediátricas ‘Prof. Dr. Fernando E. Viteri’ (Hospital de Niños ‘Sor María Ludovica’ de La Plata, Ministerio de Salud/Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), Calle 63 N° 1069 (1900) La Plata, Argentina
Horacio Federico Gonzalez
Affiliation:
IDIP – Instituto de Desarrollo e Investigaciones Pediátricas ‘Prof. Dr. Fernando E. Viteri’ (Hospital de Niños ‘Sor María Ludovica’ de La Plata, Ministerio de Salud/Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), Calle 63 N° 1069 (1900) La Plata, Argentina Cátedra de Posgrado de Nutrición Humana de la Facultad de Ciencias Médicas de la Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Argentina
*
*Corresponding author: Silvana Visentin, email [email protected]

Abstract

During the first thousand days of life, fetus and infant’s nutrition depends on mother’s diet. Polyunsaturated fatty acids (PUFA) are important substrates in infant neurogenesis. We related erythrocyte membrane (EM) and breast milk fatty acids (FA) profile in lactating mothers with the EM FA profile in exclusively breastfed infants and evaluated maternal fat consumption. We conducted an observational, cross-sectional analytical study. During the 2016–2019 period, milk and blood samples from adult mothers 90 days post-partum and infant’s blood were analysed, and FA were determined by GC. A frequency of consumption survey of fatty acids precursor foods and sources was conducted. The sample included forty-five mother–infant EM and forty-five milk samples donated by the same mothers. A low percentage of DHA (0·14 (0·12–0·2)) was found in milk, consistent with mother’s low consumption of DHA-rich foods. A significant positive correlation between infant’s EM DHA percentage and milk DHA percentage (r = 0·39; P value 0·008), as well as between infant’s EM ω-3 fatty acids sum and milk DHA percentage (r = 0·39; P value 0·008), was found. When milk had a DHA percentage greater than or equal to 0·20 %, infants had a significant increase in DHA in their EM. Mother’s consumption of DHA precursors and sources was NS. The relation between the DHA percentage distribution found in maternal milk, and the DHA percentage distribution found in infant’s and mother’s EM was proven in this population. Dietary fatty acid intake is associated with the maternal milk lipid distribution and with mothers’ and infant’s EM fatty acids percentage.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Billeaud, C, Brines, J, Belcadi, W, et al. (2021) Nutrition of pregnant and lactating women in the first 1000 days of infant. Healthcare 10, 65.CrossRefGoogle ScholarPubMed
WHO (2013) Global Action Plan for the Prevention and Control of NCDs 2013–2020. Geneva, Switzerland: WHO. http://www.who.int/nmh/events/ncd_action_plan/en/ (accessed January 2022).Google Scholar
Fats and Fatty Acids in Human Nutrition (2010) Report of an expert consultation. FAO Food Nutr Pap 91, 1166.Google Scholar
Lagercrantz, H (2016) Connecting the brain of the child from synapses to screen-based activity. Acta Paediatr 105, 352357.CrossRefGoogle ScholarPubMed
Birch, EE, Castañeda, YS, Wheaton, DH, et al. (2005) Visual maturation of term infants fed long-chain polyunsaturated fatty acid-supplemented or control formula for 12 months. Am J Clin Nutr 81, 871879.CrossRefGoogle ScholarPubMed
Koletzko, B, Agostini, C, Agostoni, C, et al. (2008) World Association of Perinatal Medicine Dietary Guidelines Working Group. The roles of log chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med 36, 514.CrossRefGoogle Scholar
Voet, D & Voet, JG (2006) Metabolismo de los lípidos (Lipid Metabolism). Bioquímica. Buenos Aires, Argentina: Editorial Panamericana. pp. 9451022.Google Scholar
El-Husseini, AE & Bredt, DS (2002) Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 3, 791802.CrossRefGoogle Scholar
Straarup, EM, Lauritzen, L, Faerk, J, et al. (2006) The stereospecific triacylglycerol structures and fatty acid profiles of human milk and infant formulas. J Pediatr Gastroenterol Nutr 42, 293299.CrossRefGoogle ScholarPubMed
Aguilera, CM, Rupérez Cano, A & Ruíz Ojeda, FJ (2017) Regulación de la expresión génica mediada por lípidos (Lipid-Mediated Regulation of Gene Expression), Tomo II. Madrid, España: Editorial Médica Panamericana. pp. 261280.Google Scholar
Bakker, EC, Hornstra, G, Blanco, CE, et al. (2009) Relationship between long chain polyunsaturated fatty acids at birth and motor function at 7 years of age. Eur J Clin Nutr 63, 499504.CrossRefGoogle ScholarPubMed
Cheatham, CL, Colombo, J & Carlson, SE (2006) Fatty acids and cognitive and visual acuity development methodologic and conceptual considerations. Am J Clin Nutr 83, s1458s1466.CrossRefGoogle ScholarPubMed
Mendez, MA, Torrent, M, Julvez, J, et al. (2009) Maternal fish and other seafoods intakes during pregnancy and child neurodevelopment at age 4 years. Public Health Nutr 12, 17021710.CrossRefGoogle ScholarPubMed
Innis, SM & Elias, SL (2003) Intakes of essential n-6 and n-3 polyunsaturated fatty acids among pregnant Canadian women. Am J Clin Nutr 77, 473478.CrossRefGoogle ScholarPubMed
Barrera, C, Valenzuela, R, Chamorro, R, et al. (2018) The impact of maternal diet during pregnancy and lactation on the fatty acid composition of erythrocytes and breast milk of Chilean women. Nutrients 10, 839.CrossRefGoogle ScholarPubMed
Hoddinott, P, Tappin, D & Wright, C (2008) Breast feeding. BMJ 336, 881887.CrossRefGoogle ScholarPubMed
Jia, X, Pakseresht, M, Wattar, N, et al. (2015) APrON study team. Women who take n-3 long-chain polyunsaturated fatty acid supplements during pregnancy and lactation meet the recommended intake. Appl Physiol Nutr Metab 40, 474481.CrossRefGoogle Scholar
Kris-Etherton, PM & Innis, S (2007) American Dietetic Association, Dietitians of Canada. Position of the American Dietetic Association and Dietitians of Canada: dietary fatty acids. J Am Diet Assoc 107, 15991611.Google ScholarPubMed
Koletzko, B, Cetin, I & Brenna, JT (2007) Dietary fat intakes for pregnant and lactating women. Br J Nutr 98, 873877.CrossRefGoogle ScholarPubMed
European Food Safety Authority: EFSA (2014) Panel on Dietetic Products, Nutrition, and Allergies (NDA): scientific opinion on the essential composition of infant and follow-on formulae. EFSA J 12, 3760.CrossRefGoogle Scholar
Farahnak, Z, Yuan, Y, Vanstone, CA, et al. (2020) Maternal and neonatal red blood cell n-3 polyunsaturated fatty acids inversely associate with infant whole-body fat mass assessed by dual-energy X-ray absorptiometry. Appl Physiol Nutr Metab 45, 318326.CrossRefGoogle ScholarPubMed
Valentine, CJ & Wagner, CL (2013) Nutritional management of the breastfeeding dyad. Pediatr Clin North Am 60, 261274.CrossRefGoogle ScholarPubMed
World Health Organization (2006) WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight for-Length, Weight-for-Height and Body Mass Index-for Age: Methods and Development. Geneva: WHO.Google Scholar
World Health Organization (2018) WHO Obesity and Overweight. Data and Figures (Internet). Geneva: WHO. https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight (accessed January 2022).Google Scholar
Khodayar-Pardo, P, Mira-Pascual, L, Collado, MC, et al. (2014) Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J Perinatol 34, 599605.CrossRefGoogle ScholarPubMed
Collado, MC, Santaella, M, Mira-Pascual, L, et al. (2015) Longitudinal study of cytokine expression, lipid profile and neuronal growth factors in human breast milk from term and preterm deliveries. Nutrients 7, 85778591.CrossRefGoogle ScholarPubMed
Lucas, A, Gibbs, JA, Lyster, RL, et al. (1978) Creamatocrit: simple clinical technique for estimating fat concentration and energy value of human milk. Br Med J 1, 10181020.CrossRefGoogle ScholarPubMed
Folch, J, Lees, M & Sloane Stanley, GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226, 497509.CrossRefGoogle ScholarPubMed
Morrison, WR & Smith, LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoridemethanol. J Lipid Res 5, 600608.CrossRefGoogle ScholarPubMed
Arija Val, V & Fernandez Ballart, J (2000) Métodos de valoración del consumo alimentario (Methods for assessing food consumption). In Nutrición y dietética clínica, pp. 5567 [Salas-Salvadó, J, Bonada i Sanjaume, A, Trallero Casañas, R, et al., editors]. Barcelona, España: DOYMA.Google Scholar
Visentin, S, Malpeli, A, Fasano, V, et al. (2019) Docosahexaenoic acid in mature breast milk of low-income mothers. J Pediatr Gastroenterol Nutr 68, 738741.CrossRefGoogle ScholarPubMed
Ministerio de Salud de la Nación & Dirección Nacional de Maternidad e Infancia (National Health Ministry, National Maternity and Childhood Direction) (2007) Software SARA: Sistema de Análisis y Registro de Alimentos. (Food Record Analysis System). Versión 1.2.22 ed. 2007. https://datos.dinami.gov.ar/sara/ (accessed February 2022).Google Scholar
Gobierno de la Provincia de Buenos Aires & Ministerio de Hacienda y Finanzas (Buenos Aires Province Government, Finance and Economy Ministry) (2016) Metodología necesidades básicas insatisfechas (Methodology for Unsatisfied Basic Needs) (Internet). La Plata: Dirección Provincial de Estadística. ––––––––––http://www.estadistica.ec.gba.gov.ar/dpe/index.php/2016–05–30–15–56–27/2016–06–03–13–13–37/necesidades-basicasinsatisfechas/177-metodologia-necesidades-basicas-insatisfechas/230-metodologia-necesidades-basicas-insatisfechas (accessed February 2022).Google Scholar
Grote, V, Verduci, E, Scaglioni, S, et al. (2016) European Childhood Obesity Project. Breast milk composition and infant nutrient intakes during the first 12 months of life. Eur J Clin Nutr 70, 250256.CrossRefGoogle ScholarPubMed
Brenna, JT, Varamini, B, Jensen, RG, et al. (2007) Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr 85, 14571464.CrossRefGoogle ScholarPubMed
Lauritzen, L & Carlson, SE (2011) Maternal fatty acid status during pregnancy and lactation and relation to newborn and infant status. Matern Child Nutr 7, 4158.CrossRefGoogle ScholarPubMed
Meneses, F, Torres, AG & Trugo, NM (2008) Essential and long-chain polyunsaturated fatty acid status and fatty acid composition of breast milk of lactating adolescents. Br J Nutr 100, 10291037.CrossRefGoogle ScholarPubMed
Simopoulos, AP (2016) An increase in the n-6/n-3 fatty acid ratio increases the risk for obesity. Nutrients 8, 128.CrossRefGoogle Scholar
Peng, Y, Zhou, T, Wang, Q, et al. (2009) Fatty acid composition of diet, cord blood and breast milk in Chinese mothers with different dietary habits. Prostaglandins Leukot Essent Fat Acids 81, 325330.CrossRefGoogle ScholarPubMed
Kim, D, Choi, JE & Park, Y (2019) Low-linoleic acid diet and oestrogen enhance the conversion of α-linolenic acid into DHA through modification of conversion enzymes and transcription factors. Br J Nutr 121, 137145.CrossRefGoogle ScholarPubMed
Judge, MP (2018) n-3 consumption during pregnancy to support optimal outcomes. J Obstet Gynecol Neonatal Nurs (Internet) 47, 429437.CrossRefGoogle ScholarPubMed
Krasevec, JM, Jones, PJ, Cabrera-Hernandez, A, et al. (2002) Maternal and infant essential fatty acid status in Havana, Cuba. Am J Clin Nutr 76, 834844.CrossRefGoogle ScholarPubMed
Pontes, PV, Torres, AG, Trugo, NMF, et al. (2006) n-6 and n-3 long-chain polyunsaturated fatty acids in the erythrocyte membrane of Brazilian preterm and term neonates and their mothers at delivery. Prostaglandins, Leukot Essent Fat Acids 74, 117123.CrossRefGoogle Scholar
Segura, SA, Ansótegui, JA & Marta Díaz-Gómez, N (2016) The importance of maternal nutrition during breastfeeding: do breastfeeding mothers need nutritional supplements? An Pediatr 84, 347.e1347.e7.Google Scholar
FAO & FINUT (2010) Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food Nutr Pap 91, 7789.Google Scholar
Gaete, GM & Atalah, SE (2003) Niveles de LC-PUFA n-3 en la leche materna después de incentivar el consumo de alimentos marinos (LC-PUFA n-3 levels in breast milk after encouraging seafood consumption). Rev Chil Pediatr 74, 158165.CrossRefGoogle Scholar
Bosch, V, Golfetto, I, Alonso, H, et al. (2009) Ácidos grasos de la leche materna madura de mujeres venezolanas de estratos socioeconómicos bajos: Influencia de la temperatura y tiempo de almacenamiento (Fatty acids in mature breast milk of Venezuelan women from low socioeconomic strata: influence of temperature and storage time). ALAN (Internet) 59, 6165. –http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004–06222009000100009&lng=es (accessed June 2022).Google Scholar
Auestad, N, Scott, DT, Janowsky, JS, et al. (2003) Visual, cognitive, and language assessments at 39 months: a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age. Pediatrics 112, 177183.CrossRefGoogle ScholarPubMed
Campoy, C, Escolano-Margarit, MV, Anjos, T, et al. (2012) n-3 fatty acids on child growth, visual acuity and neurodevelopment. Br J Nutr 107, S85106.CrossRefGoogle ScholarPubMed
Del Prado, M, Villalpando, S, Elizondo, A, et al. (2001) Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. Am J Clin Nutr 74, 242247.CrossRefGoogle ScholarPubMed
Torres, AG, Ney, JG, Meneses, F, et al. (2006) Polyunsaturated fatty acids and conjugated linoleic acid isomers in breast milk are associated with plasma non-esterified and erythrocyte membrane fatty acid composition in lactating women. Br J Nutr 95, 517524.CrossRefGoogle ScholarPubMed
Jakobik, V, Burus, I & Decsi, T (2009) Fatty acid composition of erythrocyte membrane lipids in healthy subjects from birth to young adulthood. Eur J Pediatr 168, 141147.CrossRefGoogle ScholarPubMed
Visentin, S, Vicentin, D, Magrini, G, et al. (2016) Red blood cell membrane fatty acid composition in infants fed formulas with different lipid profiles. Early Hum Dev 100, 1115.CrossRefGoogle ScholarPubMed