Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T16:33:07.675Z Has data issue: false hasContentIssue false

2-Aminoethylphosphonic acid as an indicator of Tetrahymena pyriformis W growth in protein-quality evaluation assay

Published online by Cambridge University Press:  09 March 2007

Julita Maciejewicz-Ryś
Affiliation:
Department of Animal Nutrition, Institute of Animal Husbandry, Skr. 161, 30-960 Kraków, Poland
Anna M. Antoniewicz
Affiliation:
Department of Animal Nutrition, Institute of Animal Husbandry, Skr. 161, 30-960 Kraków, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The concentration of 2-aminoethylphosphonic acid (AEP) in 96 h cultures of Tetrahymena pyriformis W was studied in order to apply it as an indicator in the assay of the relative nutritive value (RNV; protozoa population with test protein: protozoa population with whole-egg powder) of protein. Foodstuffs and food mixtures of different protein contents and qualities were used as test samples.

2. RNV values based on AEP determination (RNVAEP) were compared with corresponding values calculated from protozoa counts (RNVpc), as well as with biological value (bv) and net protein utilization (npu) of the same proteins assayed on rats.

3. Both for foodstuffs and food mixtures highly significant correlations were found between RNVAEP and RNVpc, RNVAEP and both bv and npu, and RNVpc, and both bv and npu.

4. AEP content in the protozoal suspension was preferred to cell count as a measure of growth response, since it took into account large differences in cell dimensions that were observed between cultures grown with different test proteins.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Abou Akkada, A. R., Messmer, D. A., Fina, L. R. & Bartley, E. E. (1968). J. Dairy Sci. 51, 78.CrossRefGoogle Scholar
Anderson, M. E. & Williams, H. H. (1951). J. Nutr. 44, 335.CrossRefGoogle Scholar
Baum, F. & Haenel, H. (1965). Nährung, 9, 517.CrossRefGoogle Scholar
Bergner, H., Münchow, H. & Koch, R. (1968). Arch. Tierernähr. 18, 212.CrossRefGoogle Scholar
Boyne, A. W., Carpenter, K. J. & Woodham, A. A. (1961). J. Sci. Fd Agric. 12, 832.CrossRefGoogle Scholar
Boyne, A. W., Price, S. A., Rosen, G. D. & Stott, J. A. (1967). Br. J. Nutr. 21, 181.CrossRefGoogle Scholar
Carpenter, K. J. (1973). Nutr. Abstr. Rev. 43, 423.Google Scholar
Czerkawski, J. W. (1974). J. Sci. Fd Agric. 25, 45.CrossRefGoogle Scholar
Eggum, B. O. (1973). A study of Certain Factors Influencing Protein Utilization in rats and Pigs, p. 17. Kopenhavn: Frederiksberg Bogtrykkeri.Google Scholar
El-Sherbiny, A. E., Draper, S. R. & Topps, J. H. (1976). Proc. Nutr. Soc. 35, 88A.Google Scholar
Evancho, G. M., Hurt, H. D., Devlin, P. A., Landers, R. E. & Ashton, D. H. (1977). J. Fd Sci. 42, 444.CrossRefGoogle Scholar
Fernell, W. R. & Rosen, G. D. (1956). Br. J. Nutr. 10, 143.CrossRefGoogle Scholar
Fiske, C. H. & Subbarow, Y. (1925). J. biol. Chem. 66, 375.CrossRefGoogle Scholar
Frank, O., Baker, H., Hutner, S. H., Rusoff, I. I. & Morck, R. A. (1975). In Protein Nutritional Quality of Foods and Feeds. Part 1, p. 203 [Friedman, M., editor]. New York: Marcel Dekker, Inc.Google Scholar
Helms, P. & Rølle, G. (1970). In Evaluation of Novel Protein Products. Wenner-Gren Center International Symposium Series, Vol. 14, p. 259 [Bender, A. E., Kihlberg, R., Løfgvist, B. and Munch, L., editors]. Oxford: Pergamon Press.CrossRefGoogle Scholar
Ibrahim, E. A. & Ingalls, J. R. (1972). J. Dairy Sci. 55, 971.CrossRefGoogle Scholar
Kandatsu, M. & Horiguchi, M. (1962). Agric. biol. Chem. Tokyo 26, 721.CrossRefGoogle Scholar
Landers, R. E. (1975). In Protein Nutritional Quality of Foods and Feeds. Part I, p. 185 [Friedman, M., editor]. New York: Marcel Dekker, Inc.Google Scholar
Maciejewicz, J. (1972). Roczn. Techn. Chemii Zywn. XXII, 57.Google Scholar
McCashland, B. W. & Johnson, V. A. (1957). Growth XXI, 11.Google Scholar
Reynolds, H. (1970). J. Bact. 104, 719.CrossRefGoogle Scholar
Rockland, L. B. & Dunn, M. S. (1949). Fd Technol. 3, 289.Google Scholar
Rølle, G. (1975). Acta agric, scand. 25, 17.CrossRefGoogle Scholar
Rølle, G. & Eggum, B. O. (1971). Acta agric. scand. 21, 69.CrossRefGoogle Scholar
Rosen, G. D., Stott, J. A. & Smith, H. (1962). Cereal Sci. Today 7, 36.Google Scholar
Rosenberg, H. (1964). Nature, Lond. 203, 299.CrossRefGoogle Scholar
Shepherd, N. D., Taylor, T. G. & Wilton, D. C. (1975). Proc. Nutr. Soc. 34, 100 A.Google Scholar
Shorrock, C. (1976). Br. J. Nutr. 35, 333.CrossRefGoogle Scholar
Shorrock, C. & Ford, J. E. (1973). In Protein in Human Nutrition, p. 207 [Porter, J. W. G. and Rolls, B. A., editors]. London: Academic Press.Google Scholar
Stott, J. A. & Smith, H. (1966). Br. J. Nutr. 20, 663.CrossRefGoogle Scholar
Stott, J. A., Smith, H. & Rosen, G. D. (1963). Br. J. Nutr. 17, 227.CrossRefGoogle Scholar
Summers, L. G. (1963). J. Protozool. 10, 293.CrossRefGoogle Scholar
Teunisson, D. J. (1961). Analyt. Biochem. 2, 405.CrossRefGoogle Scholar
Teunisson, D. J. (1971). Appl. Microbiol. 21, 878.CrossRefGoogle Scholar
Viswanatha, T. & Liener, I. E. (1955). Archs Biochem. Biophys. 56, 222.CrossRefGoogle Scholar
Vořišek, K. & Leitgeb, S. (1973). Sb. vys. Šk. Praha Rada B, 69.Google Scholar