Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T14:49:42.809Z Has data issue: false hasContentIssue false

α-1-Antitrypsin metabolism in the protein-deficient weanling rat

Published online by Cambridge University Press:  09 March 2007

Eric C. Lewis
Affiliation:
Department of Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
Robert H. Glew
Affiliation:
Department of Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
James Chambers
Affiliation:
Department of Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
Patrick Coyle
Affiliation:
Department of Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
Jhon Coppes
Affiliation:
Department of Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Protein-deficient weanling rats fed on a 30 g casein/kg diet for 3 weeks lost albumin but maintained the level of serum α-1-antitrypsin, the most abundant protease inhibitor in blood.

2.α-1-Antitrypsins from malnourished rats and control rats (given 250 g casein/kg diet) differed; the protease inhibitor from protein-deficient animals: (1) was more acidic, (2) appeared slightly larger (57400 v. 56000 daltons) on sodium dodecyl sulphate (SDS)-polyacrylamide gels, (3) had a more acidic Pi type and increased anodal mobility at pH 8.9, (4) bound more concanavalin-A and contained more carbohydrate, specifically two to three extra sialic acid residues. The amino sugar and neutral sugar contents of both preparations of α-1-antitrypsin were the same.

3. Analysis of the products of cyanogen-bromide cleavage revealed that α-1-antitrypsin preparations from protein-deficient rats contain an extra glycopeptide that was not present in α-1-antitrypsin from control animals.

4. In vivo studies showed that the increased sialic acid content of α-1-antitrypsin of protein-deficient rats did not alter the half-life of the molecule in the blood of control rats. However, the fractional catabolic rate of α-1-antitrypsin from either well-nourished or protein-deficient rats was significantly (P < 0.01) lower in protein- deficient rats than in control rats (0.0247/h v. 0.0406/h).

5. The decreased fractional catabolic rate could not be explained by changes in hepatic mannosyl-, galactosyl- or N-acetylhexosaminyl receptors since liver perfusion studies showed that bovine serum albumin, when covalently modified separately with each of these ligands, was extracted from the perfusion medium as rapidly or more rapidly by livers from malnourished animals.

6. Perfused livers from protein-deficient rats secrete three times more α-1-antitrypsin than do livers from well-nourished animals.

7. The decreased fractional catabolic rate and increased rate of biosynthesis and secretion of the glycoprotein by livers from protein-deficient animals may account for the maintenance of α-1-antitrypsin levels during protein malnutrition.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1985

References

Achord, D. T., Brot, F. E., Bell, C. E. & Sly, W. F. (1978). Cell 15, 269278.CrossRefGoogle Scholar
Bieri, J. G., Stoewsand, G. S., Briggs, G. M., Phillips, R. W., Woodward, J. C. & Knapka, J. J. (1977). Journal of Nutrition 107, 13401350.CrossRefGoogle Scholar
Bradford, M. M. (1976). Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Chase, T. & Shaw, E. (1967). Biochemistry and Biophysical Research Communications 29, 508514.CrossRefGoogle Scholar
Critchley, D. R., Magnani, J. L. & Fishman, P. H. (1981). Journal of Biological Chemistry 256, 87248731.CrossRefGoogle Scholar
Davis, B. J. (1964). Annals of the New York Academy of Sciences 121, 404427.CrossRefGoogle Scholar
Doumas, B. T., Watson, W. & Briggs, H. G. (1971). Clinica Chimica Acta 31, 8796.CrossRefGoogle Scholar
Eriksson, S. (1965). Acta Medica Scandinavica 117 (Suppl. 432), 185.Google Scholar
Fisher, H. D., Gonzalez-Noriega, A., Sly, W. S. & Morre, D. J. (1980). Journal of Biological Chemistry 255, 96089615.CrossRefGoogle Scholar
Geiger, T., Northmann, W., Schmelzer, E., Gross, F. & Heinrich, P. C. (1982). European Journal of Biochemistry 126, 189195.CrossRefGoogle Scholar
Glew, R. H., Diven, W. F., Zidian, J. L., Rankin, B. B., Czuczman, M. & Axelrod, A. E. (1982). American Journal of Clinical Nutrition 35, 236249.CrossRefGoogle Scholar
Gross, V., Geiger, T., Tran-Thi, T. A., Gauthier, F. & Heinrich, P. C. (1982). European Journal of Biochemistry 129, 317323.CrossRefGoogle Scholar
Hodges, L. C., Laine, R. & Chan, S. K. (1979). Journal of Biological Chemistry 254, 82088212.CrossRefGoogle Scholar
James, W. P. T. & May, A. M. (1968). Journal of Clinical Investigation 47, 19581972.CrossRefGoogle Scholar
Jeppsson, J. & Boel, F. (1982). Clinical Chemistry 28, 219225.CrossRefGoogle Scholar
Kapitany, R. A. & Zebroswki, E. J. (1973). Analytical Biochemistry 56, 361369.CrossRefGoogle Scholar
Kueppers, F. & Black, L. F. (1974). American Review of Respiratory Diseases 110, 176194.Google Scholar
Laemmli, U. K. (1970). Nature 227, 680685.CrossRefGoogle Scholar
Laurell, C. B. (1972). Scandinavian Journal of Clinical Laboratory Investigation 29 (Suppl. 124), 2137.CrossRefGoogle Scholar
Laurell, C. B. (1978). Journal of Chromatography 159, 2531.CrossRefGoogle Scholar
Mancini, G., Carbonara, A. O. & Heremans, J. F. (1965). Immunochemistry 2, 235254.CrossRefGoogle Scholar
Moore, S. & Stein, W. H. (1963). Methods in Enzymology 6, 819831.CrossRefGoogle Scholar
Omene, J. A., Adamson, I., Okolo, A. A. & Glew, R. H. (1979 a).Clinical Chimica Acta 91, 213219.CrossRefGoogle Scholar
Omene, J. A., Glew, R. H. & Ihongbe, J. C. (1979 b). East African Medical Journal 56, 263265.Google Scholar
Pricer, W. E. & Ashwell, G. (1976). Journal of Biological Chemistry 251, 75397544.CrossRefGoogle Scholar
Rice, R. H. & Means, G. E. (1971). Journal of Biological Chemistry 240, 831832.CrossRefGoogle Scholar
Roll, D. E., Aquanno, J. J., Coffee, C. J. & Glew, R. H. (1978). Journal of Biological Chemistry 253, 69926996.CrossRefGoogle Scholar
Roll, D. E. & Glew, R. H. (1981). Journal of Biological Chemistry 256, 81908196.CrossRefGoogle Scholar
Roobol, A. & Alleyne, G. A. O. (1974). British Journal of Nutrition 32, 189197.CrossRefGoogle Scholar
Rosenberg, M., Roegner, V. & Becker, F. (1976). American Review of Respiratory Diseases 113, 779785.Google Scholar
Salacinski, P., Hope, J., McLean, C., Clement-Jones, V., Sykes, J., Price, J. & Lowry, P. J. (1979). Proceedings of the Society of Endocrinology 81, 131p.Google Scholar
Schelp, F. P., Pongpaew, P., Sutjahjo, S. R., Supawan, V., Saovakontha, S., Migasena, P. & Poshakrishna, P. (1981). British Journal of Nutrition 45, 451459.CrossRefGoogle Scholar
Schneider, E. G., Nguyen, H. T. & Lennarz, W. J. (1978). Journal of Biological Chemistry 253, 23482355.CrossRefGoogle Scholar
Spackman, D. N., Stein, W. H. & Moore, S. (1958). Analytical Chemistry 30, 11901206.CrossRefGoogle Scholar
Takahara, H., Nakayara, H. & Sinohara, H. (1980). Journal of Biochemistry 88, 417424.CrossRefGoogle Scholar
Takahara, H., Nakayara, H. & Sinohara, H. (1980). Journal of Biochemistry 88, 417424.CrossRefGoogle Scholar
Takasaki, S. & Kobata, A. (1976). Methods in Enzymology 50, 5054.CrossRefGoogle Scholar
Townsend, R. & Stahl, P. (1981). Biochemical Journal 194, 209214.CrossRefGoogle Scholar
Van den Hamer, C. J. A., Morell, A. G., Scheinberg, I. H., Hickman, J. & Ashwell, G. (1970). Journal of Biological Chemistry 245, 43974402.CrossRefGoogle Scholar
Vaughan, L., Lorrer, M. & Carrell, R. W. (1982). Biochimica Biophysica Acta 701, 339345.CrossRefGoogle Scholar
Warburg, O. & Christian, W. (1941). Biochemischie Zeitschrift 310, 384421.Google Scholar
Warren, L. (1959). Journal of Biological Chemistry 234, 19711975.CrossRefGoogle Scholar