The scientific legacy of Karl Pearson and his role as one of the principal architects of the modern theory of mathematical statistics, has generated enough interest to have created an intellectual enterprise on various aspects of his life and work. Despite this interest, Pearson's earliest and most formative statistical work which he delivered in thirty of his thirty-eight Gresham lectures from 17 November 1891 to 11 May 1894 has, to date, been given very little consideration. Pearson is perhaps, best known to historians of science for his first eight Gresham lectures, delivered in London in February and May, 1891, on ‘The Scope and Method of Modern Science’, as these lectures were published with modification in the Grammar of Science in 1892. The only discussions which have emerged from some of the other thirty lectures have come from Egon Pearson and Steve Stigler. As the great bulk of these lectures have not been fully utilized, previous attempts to identify the impetus to his statistical work have been derived either from his teaching of correlation at University College London in 1895–96 or from his third statistical paper which, in part, addresses Francis Galton's work on simple correlation and simple regression. In spite of the emphasis on Galton's work on simple correlation and regression, little attention has been given to Pearson's more innovative work in that paper, which includes his development of the following statistical methods: multiple correlation, multiple regression, the standard error of estimate, the coefficient of variation and the use of determinantal matrix algebra for biometrical methods. This use of a higher form of algebra not only provided a most striking departure from earlier forms and uses of statistics, but it led to an increasing specialization in the emerging discipline of ‘mathematical statistics’.