Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-03T15:40:23.293Z Has data issue: false hasContentIssue false

Swineshead on Falling Bodies: An Example of Fourteenth-Century Physics

Published online by Cambridge University Press:  05 January 2009

Extract

The “Scientific Revolution” of the seventeenth century cannot adequately be assessed without an appreciation of the achievements and limitations of those, whether giants or dwarfs, on whose shoulders Galileo and his contemporaries stood. And since for many historians Galileo's main contribution lies in the mathematization of the natural world and especially of time and motion, particular interest attaches to medieval treatises dealing with these questions, above all to those which were in widespread demand early in the sixteenth century.

Type
Documents and Translations
Copyright
Copyright © British Society for the History of Science 1966

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 The dangers of neglecting these medieval treatises have been pointed out by many since Pierre Duhem, but grievous sins of omission are still committed by scholars of high repute. See. for example, Sambursky, S. on time as a geometrical dimension, The Physical World of the Greeks (London, 1956), 152Google Scholar, and cf. Hoskin, M. A., “Commentary on Zoubov's paper”, Actes du Xe Congrès International d'Histoire des Sciences (Paris, 1964), i, 7880.Google Scholar

2 Madison, , Wis., 1959.Google Scholar

3 On Swineshead see especially Clagett, M., The Science of Mechanics, 201204Google Scholar and “Richard Swineshead and late medieval physics”, Osiris, ix (1950), 131161Google Scholar; Thorndike, Lynn, A History of Magic and Experimental Science, iii (New York, 1934), ch. 23Google Scholar; and Wilson, Curtis, William Heytesbury (Madison, Wis., 1956), passim.Google Scholar

4 We are very grateful to Fr. J. A. Weisheipl, O.P., who made available to us his important doctoral thesis (unpublished), “Early fourteenth century physics of the Merton ‘School’”.

5 For example, the gist of one of his arguments (1520 edn, f. 16r) may be rendered in modern terminology as follows. Consider a body divided along its length into parts so that the nth part is of length proportional to 1/2n, and is cold proportional to 2n if n is a multiple of 3, but is hot proportional to 2n otherwise. If we denote hotness by positive numbers and coldness by negative numbers, his argument reduces to the following: (a) Since the body as a whole is hot. (b) Since the body as a whole is not hot. Note that (b) involves there being as many positive as negative numbers in the sequence This of course antedates by some three centuries Galileo's proof that there are as many perfect squares as positive integers. For a discussion of Swineshead's use of infinite series, see Boyer, Carl B., The Concepts of the Calculus (New York, 1949), 7479Google Scholar; and also Maier, A., Die Vorläufer Galileis im 14 Jahrhundert (Rome, 1949), 127128.Google Scholar

6 Clagett, , The Science of Mechanics, 202.Google Scholar

7 Thorndike, , op. cit., 373.Google Scholar

8 Gualteri Burlei in Physicam Aristotelis … (Venice, 1501), f. 106v: Dico quod pars non movetur sursum nisi per accidens, et dico quod motus illius partis sursum ad motum totius deorsum ad locum suum naturalem non est violentus parti, sed magis naturalis, quia illa pars non movetur per se sed ad motum totius et motus totius est naturalis.

9 Clagett, , The Science of Mechanics, 570Google Scholar. See also Oresme's, Le Livre du Ciel et du MondeGoogle Scholar, ed. by Menut, A. D. and Denomy, A. L., in Mediaeval Studies, iv (1942), 293.Google Scholar

10 Alberti de Saxonia questiones super quatuor libros Aristotelis de celo et mundo, in Lokert, G. (ed.), Questiones et decisiones physicales insignium virorum (Paris, 1518), Lib. ii, qu. XXIV, f. cxviivGoogle Scholar: Iuxta istam conclusionem dubitatur posito quod aliquod grave uniforme in gravitate habeat (habent ed.) medium sue gravitatis extra medium mundi omni impedimento extrinseco amoto, nihil sibi addendo nee aliquid ab eo removendo, an sic moveretur quod tandem medium sue gravitatis esset medium mundi. Dico quod non, quia prius quod medium sue gravitatis fieret medium mundi descenderet aliqua tarditate et dupla ad illam et quadrupla ad illam et sic in infinitum, et ideo, si perpetuo maneret, perpetuo descenderet, et nunquam medium sue gravitatis fieret medium mundi. (But see also Clagett, , The Science of Mechanics, Document 9.2.)Google Scholar

11 For a discussion of this, see Clagett, , The Science of Mechanics, ch. 7.Google Scholar

12 See Clagett, ibid.; Maier, A., Die Vorläufer Galileis im 14 Jahrhundert, ch. 4Google Scholar; Crosby, H. Lamar Jr., Thomas of Bradwardine's Tractatus de proportionibus (Madison, Wis., 1954)Google Scholar; and Miss Maier's review of Crosby's volume in Isis, xlviii (1957), 8587.Google Scholar

13 See Murdoch, John E., “The medieval language of proportions” in Crombie, A. C. (ed.), Scientific Change (London, 1963), 237271.Google Scholar

14 Clagett, , The Science of Mechanics, 440444.Google Scholar

page 168 note 1 ad descensum: ad ascensum 56.

page 168 note 2 et … inequalitatis: om. 3.

page 168 note 3 circa: citra ed. 1347.

page 168 note 4 ante non: omnino 12569.

page 168 note 5 ita … moveretur: terra motione 3; factum (?) motione 4; quod illud quando (?) moveretur 6; sive motione 7; quod illud moveretur 8; quod illud quod moveretur 9.

page 168 note 6 proportionem: motionem 3; a proportione 2.

page 169 note 7 post duo: notabilia ed.

page 169 note 8 quam inter 6 … maior proportio: om. ed.

page 169 note 9 7 et 6: 6 et 7 ed.

page 169 note 10 primo tangitur: tangitur prius 3.

page 169 note 11 locali: om. 6789.

page 169 note 12 excessus: est excessus ed. 12; excessus est maior 347; maior est excessus 9.

page 169 note 13 c eo … b ad a: ita excessus e supra b est maior excessu b supra a 2.

page 170 note 14 ergo … d ad c: om. 5689.

page 170 note 15 tertium … excedetur: terminum minus equaliter ista duo illud excedit ut constat 569; tertiem minus equaliter excedunt 8.

page 170 note 16 secundum: om. 2; secundo 67.

page 170 note 17 portionalitate: proportione ed. 4; om. 12.

page 170 note 18 sunt equalia: est equale ed. 123457.

page 170 note 19 sicut: ad medium ed. 12; sicut medium 3.

page 170 note 20 d: idem 367; id 9.

page 170 note 21 d: om. ed. 1249.

page 170 note 22 secundum: tertium ed. 12.

page 171 note 23 quorum primus … excessus inter tertium et quartum: qui 5689.

page 171 note 24 scilicet … erit: scilicet primum et secundum ed. 1; om. 347.

page 171 note 25b minus: explicit 2.

page 171 note 26 continue: om. ed. 1467.

page 171 note 27 quartam … incipiens ultimam: et quartam 568; quartam 9.

page 171 note 28 et gradua … incipiens secundam quartam: om. 4.

page 171 note 29 accipiendos bis exceptis: recipiendos vel ex 56; recipiendo vel ex 8; recipiendo 9.

page 171 note 30 vocando … illorum: om. 568.

page 172 note 31 maiorem proportionem: plus 5689.

page 172 note 32 et ista: quarum proportio maxima ed. 1347.

page 172 note 33 excessus: latitudinis 589.

page 172 note 34 per … notabilis: om. 58; per antecedens 9.

page 172 note 35 illas … excessus: illos duos excessus intermedios 5689.

page 172 note 36 totius … quatuor: totius 347; aggregati ex illis quatuor 568.

page 172 note 37 ita si … in infinitum: om. 1589.

page 172 note 38 quartam totius … constituunt: om. 4.

page 172 note 39 quartam totius … octavam partem totius: octavam partem totius 37; octavam partem ipsius totius sive aggregati 6.

page 172 note 40 item quotcumque … sit par: ita quod 167.

page 172 note 41 item: arguitur quod 9.

page 172 note 42 hoc modo … inter eos: om. 89.

page 173 note 43 constituunt: constituent partem aliquotam totius denominatatim 1.

page 173 note 44 post patet: per intuenti 6; intuanti 9.

page 173 note 45 constituunt: continent 569.

page 173 note 46 octo: 16 347.

page 173 note 47 proportionalitate: proportione ed.

page 173 note 48 composito: compositum ed. 58.

page 173 note 49 quintum: quartum 37.

page 173 note 50 quartum: quintum 37.

page 173 note 51 primum … quartum: om. 67.

page 173 note 52 medietatis: medietatem 6.

page 173 note 53 medium: idem medio ed. 1; idem cum medio 347.

page 173 note 54 post duobus: sive equalibus sive ed. 1.

page 173 note 55 post accipiendo: ly ed. 1; li 3.

page 173 note 56 illorum … ergo quidlibet: om. 37.

page 174 note 57 in numero par: om. ed. 1; pares 347; numero pares 5.

page 174 note 57a proportionalitate: proportione ed.

page 174 note 58 pares: partes ed. 189.

page 174 note 59 sic: tune sit sic quod ed.; tunc 347.

page 174 note 60 semper … terminos maiores: excessus ultimus scilicet inter terminos minores sit minimus 1.

page 174 note 61 denominatam: denominata vero 3; diminutis 5; denominatis 9.

page 174 note 62 primo notabili dicto: primo dicto 37; notabili predicto 689.

page 174 note 63 equevelociter: equaliter ed. 15.

page 174 note 64 equevelociter maioris: equevelocitatem maioris 3; maioris equalem 569; equale maioris 8.

page 174 note 65 proportionata: composita 5.

page 175 note 66 deperditi continetur: deperdita invenitur ed. 1347.

page 175 note 67 post deperditi: etc. ed. 137.

page 175 note 68 16 partes: 15 partes ed.; 15 partes proportionales 5689.

page 175 note 69 minor … erit: om. 347.

page 175 note 70 post maiores: et inter terminos maiores maiores ed. 1.

page 175 note 71 quam ipsa: contra illa proportio ed. 1.

page 175 note 72 post quod: terra 3.

page 175 note 73 ex se ipso: centrum ipsum ed. 137; se ipso 4.

page 175 note 74 figure: om. 137.

page 175 note 75 d: om. ed. 1347.

page 175 note 76 post et: sic sequitur quod medietas a et tantum 4.

page 175 note 77 post et: si 689.

page 175 note 78 post et: continens ed. 1.

page 175 note 79 quandocumque: si ed. 1.

page 175 note 80 simplicis: terre 5689.

page 176 note 81 d: c 17.

page 176 note 82 ergo … et quantum: deperditam et que ed. 138.

page 176 note 83 post ergo: terre 6; terre erit et 4.

page 176 note 84 et quantum: e quantitatem 4.

page 176 note 85 post proportionali: illius divisionis ed. 1.

page 176 note 86 erit motus: est pars 5; est 9.

page 176 note 87 post gradu: subduplo ad gradum ed. 1.

page 176 note 88 erit motus: remittetur motus et erit 569.

page 176 note 89 quia: om. 5689.

page 176 note 90 remitteretur … subduplum: om. 5689.

page 176 note 91 per idem argumentum: quia tertia pars proportionalis est in duplo minor secunda et motus in tertia erit minor quam subduplus ad motum in secunda 5679.

page 177 note 92 ut patet. Sed: cum ergo 347.

page 177 note 93 ut patet. Ergo: patet quia 347.

page 177 note 94 antecedens: minor 1.

page 177 note 95 quia: qui 37; et 1.

page 177 note 96 quia: et 3479.

page 177 note 97 probationem: portionem ed. 357; proportionem 8.

page 177 note 98 hic: sic ed. 13.

page 177 note 99 conclusio: om. 5.

page 177 note 100 quod: ut 347.

page 177 note 101 ergo … sequitur: om. 589.

page 177 note 102 conclusione: positione 59.

page 177 note 103 impossibile: irrationale 9.

page 177 note 104 moveri: om. 3456789.

page 177 note 105 velocius: necessario ed. 1.

page 178 note 106 post moveretur: cuius scilicet una pars minor quam medietas esset ultra centrum ed. 1.

page 178 note 107 nititur: intendatur 347.

page 178 note 108 deorsum … versus om. 4.

page 178 note 109 nitetur: intendetur 37.

page 178 note 110 sed … etiam: iuvabit totum ad descensum quia 589.

page 178 note 111 levitatem: gravitatem ed. 37; om. 1.

page 178 note 112 ultra: om. 568.

page 178 note 113 post proportione: geometrica ed. 1.

page 178 note 114 simpliciter: simul 6789.

page 178 note 115 maiorabitur … alia: om. 3479.

page 178 note 116 finita … minorationem: sic tardius et tardius proportionaliter minorabitur 5689.

page 178 note 117 excessus: om. 5689.

page 178 note 118 sit d: om. 347.

page 179 note 119 sic capiatur: sit ed. 1; sic 3

page 179 note 120 terra: gravitas ed.

page 179 note 121 terre: gravitati ed.

page 179 note 122 ascensum: descensum ed. 13478.

page 179 note 123 nec resistit: om. 69.

page 179 note 124 elementi: illa 1; obiecti 4.

page 179 note 125 appeteret: haberet 347.

page 179 note 126 naturaliter … scilicet: appeteret ut 5689.

page 179 note 127 eiusdem … ilio: om. 345678.

page 179 note 128 si … moveretur: om. 8.

page 179 note 129 moveretur: tendit 56.

page 179 note 130 consequens … eius: om. 569.

page 179 note 131 ubi: ut ibi 569; ut 4.

page 180 note 132 sit … que: om. 59; que 8.

page 180 note 133 et: quia 346789.

page 180 note 134 ymmo: ideo ed. 1347; imago 5.

page 180 note 135 remitteretur: debet sequi 3.

page 180 note 136 resistentiam: distantiam 4.

page 180 note 137 eundem: dimidium (?) 6; dividum (?) 5.

page 180 note 138 apparet: arguitur 56; arguetur 89.

page 180 note 139 nec non … centro: om. ed. 15.

page 180 note 140 quid: quia 689.

page 180 note 141 cum puncto medio: per punctum medium 45678.

page 180 note 142 secundum extremum: per exemplum 345; per extremum 789; per punctum extremum 6.

page 181 note 143 eius: sicut 56.

page 181 note 144 partis: totius 347; om. 1.

page 181 note 145 post appetitus: ideo iuvat ed. 9.

page 181 note 146 et… appetitus: om. 568.

page 181 note 147 ut: et ed. 1.

page 181 note 148 ideo ut: et quia 5689.

page 181 note 149 post totius: descentis 589; descendentis 6.

page 181 note 150 rationabile: possibile 568.

page 181 note 151 post iste: appetitus ille parte 56; appetitus iste partes 89.

page 181 note 152 rationale: possibile 5689.

page 181 note 153 et ubi: ubi enim 56.

page 181 note 154 fieret… partis: om. 5689.

page 181 note 155 corpori: om. ed. 1.

page 181 note 156 ultra: om. 5689.

page 181 note 157 sed … appetitu: om. 14.

page 182 note 158 quia dicitur: et sicut 5689.

page 182 note 159 ita quod: om. 45689.

page 182 note 160 quod: quia ibi 1347; quod ibi 5689.

page 182 note 161 ideo … motum: om. 3.

page 182 note 162 impossibile: irrationabile 9.