Article contents
Reinventing machines: the transmission history of the Leibniz calculator
Published online by Cambridge University Press: 14 July 2014
Abstract
This paper argues that we should take into account the process of historical transmission to enrich our understanding of material culture. More specifically, I want to show how the rewriting of history and the invention of tradition impact material objects and our beliefs about them. I focus here on the transmission history of the mechanical calculator invented by the German savant Gottfried Wilhelm Leibniz. Leibniz repeatedly described his machine as functional and wonderfully useful, but in reality it was never finished and didn't fully work. Its internal structure also remained unknown. In 1879, however, the machine re-emerged and was reinvented as the origin of all later calculating machines based on the stepped drum, to protect the priority of the German Leibniz against the Frenchman Thomas de Colmar as the father of mechanical calculation. The calculator was later replicated to demonstrate that it could function ‘after all’, in an effort to deepen this narrative and further enhance Leibniz's computing acumen.
- Type
- Research Article
- Information
- Copyright
- Copyright © British Society for the History of Science 2014
References
1 See Napier, John, Mirifici logarithmorum canonis descriptio, Edinburgh: Ex officinâ Andreæ Hart bibliopôlæ, 1614Google Scholar; also Napier, , Rabdologiæ, Seu Numerationis per Virgulas Libri Duo Cum Appendice de Expeditissimo Multiplicationis Promptuari, Edinburgh: Excudebat Andreas Hart, 1617Google Scholar. For Morland see Morland, Samuel and Adamson, Humphry, A New and Most Useful Instrument for Addition and Subtraction of Pounds, Shillings, Pence, and Farthings: Without Charging the Memory, Disturbing the Mind, or Exposing the Operator to Any Uncertainty : Which No Method Hitherto Published, Can Justly Pretend to, London?: s.n., 1672Google Scholar; Morland, Samuel, The Description and Use of Two Arithmetick Instruments: Together with a Short Treatise, Explaining and Demonstrating the Ordinary Operations of Arithmetick : As Likewise a Perpetual Almanack and Several Useful Tables: Presented to … Charles II …, London: Printed and to be sold by Moses Pitt …, 1673Google Scholar. The most recent work on Morland is Ratcliff, J.R., ‘Samuel Morland and his calculating machines c.1666: the early career of a courtier–inventor in Restoration London’, BJHS (2007) 40(2), pp. 159–179Google Scholar. Some of these aids were also made of brass.
2 Pascal, Blaise, ‘Privilege de la machine arithmetique’ in Pascal, Oeuvres complètes, vol. 2, Paris: Desclée de Brouwer, 1970, pp. 713–714Google Scholar, 714.
3 For the broader context of Leibniz's life at this time see Antognazza, Maria Rosa, Leibniz: An Intellectual Biography, Cambridge: Cambridge University Press, 2009, esp. pp. 79–123Google Scholar. Leibniz procured himself during this time a copy of Pascal's Pensées. This was probably the source of his knowledge about the Pascaline. Gottfried Wilhelm Leibniz et al., Sämtliche Schriften und Briefe, Berlin etc. (Conventionally known as Akademie Ausgabe, here abbreviated AA), I, 1, p. 436.
4 Leibniz based his assumptions on Carcavy's suggestion that he could obtain access to Colbert if he could produce what he called a ‘chose réel et solide’. AA (2006 edn) II, 1, p. 308.
5 Carcavy's invitation is recorded in AA (2006 edn), II, 1, p. 208. Evidence of Leibniz's visit in the spring of 1672 is a letter from Carcavy saying, ‘Vous pouvez Monsieur, venir quand il vous plaira, mais si vous jugez à propos que ce soit demain du matin je vous attendray, Et ne vous donnerois pas cette peyne si je n'avois des affaires importantes qui m'arrestent a la maison.’ AA II, 1, p. 339. When he saw the Pascaline, Leibniz made notes on its design. See Leibniz manuscripts in the Hannover Library XLII, 5, p. 5 (Leibniz Handschriften – here abbreviated LH).
6 There is currently little work on this topic. The most recent incursion is Jones, Matthew L., ‘Improvement for profit: calculating machines and the prehistory of intellectual property’, in Riskin, Jessica and Biagioli, Mario (eds.), Nature Engaged: Science in Practice from the Renaissance to the Present, Basingstoke: Palgrave Macmillan, 2012, pp. 125–147Google Scholar. See also Jones, , Reckoning with Matter: Calculating Machines, Innovation, and Thinking about Thinking from Pascal to Babbage, Chicago: The University of Chicago Press, forthcoming 2014Google Scholar. In German see Ludolf von Mackensen, ‘Die Vorgeschichte und die Entstehung der 4-Spezies-Rechenmaschine von Gottfried Wilhelm Leibniz nach bisher unerschlossenen Manuskripten und Zeichnungen mit einem Quellenanhang der Hauptdokumente’, PhD dissertation, University of Munich, 1968. This dissertation covers the Paris phase of the development history of the machine, particularly the period 1671–1677. The interpretative line that Mackensen takes is centered on Leibniz's visionary genius, but the dissertation provides important factual information for the period covered. The addendum contains transcriptions of several manuscripts. For the period of time the Leibiz calculator was in Helmstedt under the supervision of Christian Wagner see Wilberg, Ernst Eberhard, Die Leibniz'sche Rechenmaschine und die Julius-Universität in Helmstedt, Braunschweig: Universitätbibliothek der Technischen Universität Carolo-Wilhelmina, 1977Google Scholar. For the same period but focused on the artisans see Scheel, Günter, ‘Helmstedt als Werkstatt für die Vervollkommnung der von Leibniz erfundenen und konstruierten Rechenmaschine (1700–1711)’, Braunschweigisches Jahrbuch für Landesgeschichte (2001) 82, pp. 105–118Google Scholar.
7 J. A. Bennett, curator and historian of science, has been a tireless proponent for collapsing such distinctions. See, for example, Bennett, J.A., ‘The mechanics’ philosophy and the mechanical philosophy’, History of Science (1986) 24, pp. 1–28Google Scholar.
8 The origin of these ideas is Thomas Kuhn's 1962 paper ‘The historical structure of scientific discovery’, Science (1962) 136, pp. 760–764. Rheinberger's is the most recent take on the subject. See Rheinberger, Hans-Jörg, ‘Experimental systems: historiality, narration, and deconstruction’, Science in Context (1994) 7, pp. 65–81Google Scholar. See also Schaffer, Simon, ‘Scientific discoveries and the end of natural philosophy’, Social Studies of Science (1986) 16, pp. 387–420Google Scholar. For other similar work see Woolgar, S.W., ‘Writing an intellectual history of scientific development: the use of discovery accounts’, Social Studies of Science (1976) 6, pp. 395–422Google Scholar. And a compelling case study is Brannigan, Augustine, ‘The reification of Mendel’, Social Studies of Science (1979) 9, pp. 423–454CrossRefGoogle Scholar.
9 Rheinberger, op. cit. (8), p. 412.
10 According to Mackensen, op. cit. (6), pp. 31–51 and transcriptions 128 ff., the earliest manuscripts from the Mainz period are ‘Instrumentum Arithmeticum and Instrumentum panarithmeticon oder die “Lebendige Rechenbank”’. Cf. LH XLII, 5, pp. 15–17. The correct order of the ‘Instrumentum arithmeticum’ manuscript is pp. 16v, 16r, 15v, 15r.
11 This is one of the more interesting justifications Leibniz found for the machine. The full citation is as follows: ‘La machine dont nous donnons icy la description exterieure, fait voir que l'esprit humaine peut trouver le moyen de se transplanter de telle façon dans une matière inanimée qu'il luy donne le pouvoir, de faire bien plus qu'il n'auroit fait lui-même : pour convaincre sensiblement ceux qui ont de la difficulté à concevoir comment le Createur puisse longer une apparence d'esprit un peu plus générale dans les corps des bestes qoyque fourni de tant d'organes ; puisque le loton même a peu recevoir l'imitation d'une opération de la raison qui est à la vérité particulière ou determinée, mais des plus difficiles, veu que les pythagoriciens croyaient de pouvoir par là distinguer l'homme de la beste et de faire entrer dans sa définition la faculté de se servir de nombres.’ LH XLII, 5, II, p. 33r.
12 LH XLII, 5, pp. 1–4, also 67–69. Transcribed in Jordan, W., ‘Die Leibnizsche Rechenmaschine’, Zeitschrift für Vermessungswesen (1897) 26, pp. 289–315Google Scholar.
13 Mackensen, op. cit. (6), pp. 143–162. and LH XLII, V, pp. 48–53 and 54–57.
14 Was Leibniz rewriting the history of his own machine? Leibniz mentions the roue a dents inégales in the 1677 letter to the Parisian clockmaker Olivier. Cf. Mémoire pour monsieur Olivier touchant la machine perfectionée, LH XLII, 4, II, p. 7. The undated manuscript ‘Machina aritmetica qualem curavi elaborarem’ seems to be the first comprehensive description of the wheel with unequal teeth. See LH XLII, 4, II, pp. 11–13. This is presented as a correction of and improvement over a previous technology.
15 See letters to Carcavy and correspondence with Ferrand from that year. AA I, 1, p. 452. In January 1673 the so-called ebauche was shown to the members of the Royal Society. See Birch, Thomas, The History of the Royal Society, vol. 2, Hildesheim: Georg Olms, 1968, p. 87Google Scholar. Back in Paris the development work continued while Leibniz was applying for funding from the Académie royale des sciences to bring his idea to the market. See Letter to the Académie, in Mackensen, op. cit. (6), p. 174. By 1675, having exhausted all of his possibilities in Paris, he accepted the position of councilor and librarian to the Duke of Hanover and made his way back to the German states.
16 Hansen's letter of May 1679, AA I, 2, p. 468.
17 Leibniz's manuscripts from this period are mainly focused on this. See, for example, the paper titled ‘Machine Arithmetique’ 8 Maii 1682, LH XLII, 4, II, p. 40; also ‘Ma machine Arithmetique Juinius 1684’, LH XLII, 4, II, p. 41.
18 See correspondence with Kölbing, first letter, AA I, 12, N. 65.
19 Leibniz added a pentagonal wheel to each carry to show whether the carry has been correctly performed. See AA I 17, 105. There is speculation that this would have allowed manual intervention to correct errors. See Stein, Erwin and Kopp, Franz Otto, ‘Konstruktion und Theorie der Leibnizschen Rechenmaschinen im Kontext der Vorläufer, Weiterentwicklungen und Nachbauten: Mit einem Überblick zur Geschichte der Zahlensysteme und Rechenhilfsmittel’, Studia Leibnitiana: StL; Zeitschrift für Geschichte der Philosophie und der Wissenschaften (2010) 42(1), pp. 1–128Google Scholar.
20 AA I, 17, p. 11.
21 The correspondence with Wagner is still largely in manuscript. It was kept at the university of Halle. See Halle UB YG 13; also AA I, 19. Günter Scheel has done research to uncover the names of the artisans who worked on the machine. Scheel, op. cit. (6).
22 Three clockmakers were employed there: the two brothers of the mathematician Mathias Has and another unknown artisan. The correspondence sent by Leibniz to Teuber was edited in August Nobbe, Godofredi Guilielmi L. B. de Leibnitz Lipsiensis Epistolae XLVI, 1845. For Teuber's letters to Leibiz see manuscripts at the Leibniz library in Hanover, Lbr. 916. The correspondence with Buchta is currently being edited. Some of the transcriptions are available online. See www.gwlb.de/Leibniz/Leibnizarchiv/Veroeffentlichungen/Transkriptionen.htm, accessed 10 February 2014.
23 This can be inferred from the correspondences, Teuber's testimonial and also the more recent replication attempts I discuss bellow. Contrary to what twenty-first-century replicators claim, the functioning replicas with modern materials actually show the limitations of Leibniz's machine at the time it was constructed. Even if the machine had used the manual correcting mechanism, as Stein has argued, it is unclear how well the historical machine would have worked and if it could actually work up to twelve digits as Leibniz claimed.
24 This appears in the correspondence with Teuber explaining the failure to make the carry mechanism work properly: ‘Ut decadicarum rotarum translatio bene procedat, necesse est (uti nemo Te iudicare poterit) tam ipsas decadicas rotas, quam fundamentales illas ita aequaliter collocates esse, ut quaevis decadica cuivis fundamentali accomodari posit, quod diligentiam et accurationem in opifice desiderat, et velut lapis est Lydius, quo quid valeat dignosci poterit. Quanto, obsecro, res future esset difficilior; si etiam, ut olim tot aliae particulae, quaevis tot aliis accommodari deberent? Desunt nobis »in Germania« homines satis periti et industrii, qui bene concepta bene exsequantur.’ 15 August 1714, Nobbe, op. cit. (22), p. 17. See also Shapin, Steven, A Social History of Truth: Civility and Science in Seventeenth-Century England, Chicago: The University of Chicago Press, 1999, pp. 355–407Google Scholar.
25 A good example is the letter to the Académie des sciences. See Mackensen, op. cit. (6), p. 178; also correspondence with Oldenburg, AA, III, p. 1; and correspondence with Arnauld, Tchirnhaus and Huygens.
26 AA II, 1, 164.
27 AA I, 1, 488.
28 Birch, op. cit. (15), p. 87.
29 AA III, 1, 118–119.
30 ‘Machinulam Tuam arithmeticam, quam perfecisse Te antehac jam significasti, lubentes equidem lustraremus, si promissi Tui, Soc. Regiae in public congress facti, memor occasione commode transmitter eam velles.’ AA, III, I, p. 172. Cf. commentator's note on p. 181 in the volume for the significance of ‘machinulam’ in this context. He also broke a similar promise to the Académie des sciences in Paris, where he anticipated he would send models of the machine to the Observatoire astronomique and other Parisian institutions.
31 AA III, 1, p. 283.
32 The relevant letters are at AA III, 6, pp. 271, 278, 305.
33 Leibniz himself had sent the book over to help Haes identify an instrument his patron purchased in England. AA III, 6, p. 368.
34 Gottfried Wilhelm Leibniz, ‘Brevis descriptio machinae arithmeticae’, Miscellanea Berolinensia Ad Incrementum Scientiarum (1710) 1.
35 Leupold, Jacob, Theatrum Arithmetico-Geometricum, Leipzig: Gleditsch, 1726Google Scholar.
36 Matthew Jones interprets this as evidence for emulation. Cf. Jones, Reckoning with Matter, op. cit. (6).
37 The letters from Kästner are found together with the manuscripts pertaining to the machine. LH XLII, 4, p. 31r.
38 Kästner, Abraham Gotthelf, Fortsetzung der Rechenkunst in Anwendungen auf mancherley Geschäffte, Göttingen: Vandenhoeck, 1786, p. 582Google Scholar f.
39 Bischoff, Johann Paul, Versuch einer Geschichte der Rechenmaschine, Ansbach, 1804, p. 125Google Scholar.
40 A drawing of Hahn's stepped wheel is found in Bischoff's book.
41 Kistermann, F.W., ‘When Could Anyone Have Seen Leibniz's Stepped Wheel?’, IEEE Annals of the History of Computing (1999) 21(2), pp. 68–72CrossRefGoogle Scholar, 70.
42 Jones, Reckoning with Matter, op. cit. (6).
43 Martin, Ernst, The Calculating Machines (Die Rechenmaschinen): Their History and Development, Cambridge, MA: MIT Press, 1992, p. 41Google Scholar.
44 Gerke, Rudolf, ‘Die Leibnizsche Rechenmaschine’, Zeitschrift für Vermessungswesen (1880) 9, pp. 305–312Google Scholar.
45 Translation of the passage in full: ‘The thing was so well built that according to Leibniz and the testimony of other mathematicians, even a child could calculate with the machine. The whole world was filled with wonder over the invention. The great mathematicians such as Huygens, Thevenot, Arnaud and others paid Leibniz their homage and even the friends and relatives of Pascal had to admit the originality of the invention.’ Gerke, op. cit. (44), p. 307.
46 Gerke, op. cit. (44), pp. 310–311.
47 Jordan, Wilhelm, Handbuch der Vermessungskunde, Stuttgart: Metzler, 1895, p. 136Google Scholar.
48 Jordan, op. cit. (47), p. 137.
49 Jordan's note at the end of Burkhardt's report. See Burkhardt, A., ‘Die Leibnizsche Rechenmaschine’, Zeitschrift für Vermessungswesen (1897) 26, pp. 392–398Google Scholar, 398.
50 Burkhardt, op. cit. (49), p. 395.
51 Burkhardt, op. cit. (49), p. 398.
52 Burkhardt, op. cit. (49), p. 393.
53 See www-03.ibm.com/ibm/history/exhibits/attic3/attic3_037.html, accessed 11 February 2014.
54 In addition to these two projects there is a third by Erwin Stein. It does not differ substantially, however, from Badur's and Lehmann's, being also an attempt to show that the machine worked ‘after all’. See Kopp, Franz Otto and Stein, Erwin, ‘Es funktioniert doch – mit zwei Korrekturen: Zehnerüberträge der Leibniz-Maschine; zur Konstruktion des hannoverschen Nachbaus der Vier-Spezies-Rechenmaschine von Leibniz’, Leibniz: Auf den Spuren des großen DenkersUnimagazin (2006) 3–4, pp. 56–59Google Scholar; Kopp and Stein, ‘Konstruktive Verbesserungen im hannoverschen Modell der Leibnizschen Vier-Spezies-Rechenmaschine’, Einheit in der Vielheit, Teil 1, Hannover: Gottfried-Wilhelm-Leibniz-Ges, 2006, pp. 390–397; Stein, Erwin and Kopp, Franz Otto, ‘Calculemus! Neue hannoversche Funktionsmodelle zu den Rechenmaschinen von Leibniz’, Leibniz: auf den Spuren des großen DenkersUnimagazin (2006) 3–4, pp. 60–63Google Scholar. The description of another reconstruction of a Leibniz cypher machine can be found in Rescher, Nicholas, Leibniz and Cryptography: An Account on the Occasion of the Initial Exhibition of the Reconstruction of Leibniz's Cipher Machine, Pittsburgh, PA: University Library System, University of Pittsburgh, 2012Google Scholar.
55 Lehmann, Nikolaus Joachim, ‘Leibniz als Erfinder und Konstrukteur von Rechenmaschinen’, in Nowak, Kurt and Power, Hans (eds.), Wissenschaft und Weltgestaltung, Hildesheim, 1999, pp. 255–267Google Scholar.
56 The passage in full: ‘While the construction of the Dresden replica was progressing its functionality was studied in greater detail and it was recognized that the basic measurements and order of the parts allowed for the fully automatic carry of the decimals, which Leibniz wanted. Burkhardt followed in his restoration a theory that was based on false assumptions and wrongly modified the machine according to it.’ Lehmann, op. cit. (55), p. 176.
57 The passage in full reads, ‘The Dresden replica, which is capable of functioning and accords perfectly with Leibniz's intention, confirms perfectly the feasibility of his conception and also his ideas in great detail.’ Lehmann, op. cit. (55), p. 186.
58 Lehmann, op. cit. (55), p. 188.
59 Badur, Klaus and Rottstedt, Wolfgang, ‘Und sie rechnet doch richtig! Erfahrungen beim Nachbau einer Leibniz-Rechenmaschine’, Studia Leibnitiana (2004) 36, pp. 130–146Google Scholar; Klaus Badur, ‘Neue Erkenntnisse zur Rechengenauigkeit der Leibniz Rechenmaschine: Erfahrungen mit einem originalgetreuen Nachbau’, in Einheit in der Vielheit, Vorträge, VIII, Hannover: Gottfried-Wilhelm-Leibniz-Ges, 2006, pp. 16–23.
60 Cf. Badur, op. cit. (59), 19.
61 He refers to the machine as an ‘original true replica with modern finishing techniques’ – ‘originalgetreue Nachbau mit moderner Fertigungstechnik’. Badur, op. cit. (59), 20.
62 The entire passage reads: ‘In conclusion I want to say that Leibniz was right when he wrote in his letter to Johann Bernouli on 26 May 1697 that he has a clear idea of the internal construction of the machine and that the perfection of the machine will depend only on the good implementation of his ideas. To this I want to add that the technical possibilities were not given at that time. Leibniz was ahead of his time with his ideas, relative to the implementation possibilities.’ Badur, op. cit. (59), 20.
63 Collins, H.M., Changing Order: Replication and Induction in Scientific Practice, London: Sage Publications, 1985Google Scholar.
64 See www.nlb-hannover.de/kulturprogramm/pressemitteilungen/2009/Washington.pdf, accessed 11 February 2014.
65 Mackensen, op.cit. (6), p. 44, suggests an analogy with a music box set-up depicted in Athanasius Kirchner's Musurgia universalis.
66 Hoyau, M., ‘Description d'une machine à calculer nommée arithmomètre, de l'invention de M. Le Chevalier Thomas, de Colmar’, in Bulletin de la Société d'encouragement pour l'industrie nationale, Paris: Siège de la Société, 1822, pp. 356–368Google Scholar, 357 – ‘l'aspect d'un escalier à marches très courtes, tournant autour d'une colonne’.
67 Hoyau, op. cit. (66). See also other documents available online at www.arithmometre.org/Bibliotheque/PageBibliothequeA.html, accessed 11 February 2014.
68 See how the machine is presented in Archives des découvertes et des inventions nouvelles, Paris: Treuttel et Würtz, 1823, 279.
69 For example See Encyclopedia Britannica, at www.britannica.com/EBchecked/topic/726021/Arithmometer, accessed 11 February 2014.
- 7
- Cited by