Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T00:48:17.888Z Has data issue: false hasContentIssue false

The quest for an absolute chronology in human prehistory: anthropologists, chemists and the fluorine dating method in palaeoanthropology

Published online by Cambridge University Press:  13 January 2009

MATTHEW R. GOODRUM*
Affiliation:
Department of Science and Technology in Society, Virginia Tech, Blacksburg, VA 24061, USA.
CORA OLSON
Affiliation:
Department of Science and Technology in Society, Virginia Tech, Blacksburg, VA 24061, USA.

Abstract

By the early twentieth century there was a growing need within palaeoanthropology and prehistoric archaeology to find a way of dating fossils and artefacts in order to know the age of specific specimens, but more importantly to establish an absolute chronology for human prehistory. The radiocarbon and potassium–argon dating methods revolutionized palaeoanthropology during the last half of the twentieth century. However, prior to the invention of these methods there were attempts to devise chemical means of dating fossil bone. Collaborations between Emile Rivière and Adolphe Carnot in the 1890s led to the development of the fluorine dating method, but it was not until the 1940s that this method was improved and widely implemented by Kenneth Oakley to resolve a number of problems in palaeoanthropology, including the Piltdown Man controversy. The invention of the fluorine dating method marked a significant advance in the quest for absolute dating in palaeoanthropology, but it also highlights interesting problems and issues relating to the ability of palaeoanthropologists and chemists to bring together different skills and bodies of knowledge in order successfully to develop and apply the fluorine dating method.

Type
Research Article
Copyright
Copyright © 2009 British Society for the History of Science

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 For an account of the problems involved in settling the question of the coexistence of humans with Pleistocene animals see D. K. Grayson, The Establishment of Human Antiquity, New York, 1983; and A. Bowdoin Van Riper, Men among the Mammoths: Victorian Science and the Discovery of Human Prehistory, Chicago, 1993.

2 The history of the three-age system is discussed in B. Gräslund, The Birth of Prehistoric Chronology: Dating Methods and Dating Systems in Nineteenth-Century Scandinavian Archaeology, Cambridge, 1987; Morse, M. A., ‘Craniology and the adoption of the three-age system in Britain’, Proceedings of the Prehistoric Society (1999), 65, 116CrossRefGoogle Scholar; J. Rodden, ‘The development of the three age system: archaeology's first paradigm’, in Towards a History of Archaeology (ed. G. Daniel), London, 1981, 51–68; Skaare, K., ‘Christian Jürgensen Thomsen-Grossereren som grunnla nordisk arkeologi’, Nordisk Tidskrift för Vetenskap, Konst och Industri (1988), 64, 369–81Google Scholar.

3 G. de Mortillet, Le Préhistorique: Antiquité de l'homme, Paris, 1883.

4 J. W. Dawson, Fossil Men and Their Modern Representatives, London, 1880, 278.

5 Prestwich, J., ‘Theoretical considerations on the conditions under which the (drift) deposits containing the remains of extinct mammalia and flint implements were accumulated, and on their geological age’, Philosophical Transactions of the Royal Society of London (1864), 154, 303CrossRefGoogle Scholar.

6 Geikie, A., ‘On denudation now in progress’, Geological Magazine (1868), 5, 249CrossRefGoogle Scholar.

7 C. Lyell, Principles of Geology, 12th edn, 2 vols., London, 1875, i, 286.

8 J. Lubbock, Pre-historic Times, as Illustrated by Ancient Remains, and the Manners and Customs of Modern Savages, 4th edn, New York, 1887, 398–401.

9 Lubbock, op. cit. (8), 401–2. Gilliéron published his ideas in Notice sur les habitations Lacustres du pont de Thièle (1862).

10 Lubbock, op. cit. (8), 431.

11 J. Evans, The Ancient Stone Implements, Weapons and Ornaments, of Great Britain, 2nd edn, London, 1897, Chapter 25.

12 The eolith controversy has been examined in some detail by de Bont, R., ‘The creation of prehistoric man: Aimé Rutot and the eolith controversy, 1900–1920’, Isis (2003), 94, 604–30CrossRefGoogle ScholarPubMed; D. K. Grayson, ‘Eoliths, archaeological ambiguity, and the generation of “middle range” research’, in American Archaeology Past and Future: A Celebration of the Society for American Archaeology 1935–1985 (ed. D. Meltzer, D. Fowler and J. Sabloff), Washington, DC, 1986, 77–133; F. Spencer, ‘Prologue to a scientific forgery: the British eolithic movement from Abbeville to Piltdown’, in Bones, Bodies, Behavior: Essays on Biological Anthropology (ed. G. Stocking), Madison, WI, 1988, 84–116.

13 On Galley Hill Man and the presapiens theory see F. Spencer, Piltdown: A Scientific Forgery, New York, 1990, 20–8; and R. G. Delisle, Debating Humankind's Place in Nature 1860–2000: The Nature of Palaeoanthropology, Upper Saddle River, NJ, 2007, 132–4.

14 For a general discussion of the history of dating methods in archaeology see M. J. Aitken, Science-Based Dating in Archaeology, London, 1990; S. Bowman, ‘Questions of chronology’, in Science and the Past (ed. S. Bowman), London, 1991, 117–40; S. Nash (ed.), It's about Time: A History of Archaeological Dating in North America, Salt Lake City, 2000.

15 S. Nash, Time, Trees, and Prehistory: Tree-Ring Dating and the Development of North American Archaeology, 1914–1950, Salt Lake City, 1999.

16 Burleigh, R., ‘W. F. Libby and the development of radiocarbon dating’, Antiquity (1981), 55, 96–8CrossRefGoogle Scholar; Marlowe, G., ‘W. F. Libby and the archaeologists, 1946–1948’, Radiocarbon (1980), 22, 1005–14CrossRefGoogle Scholar; Marlowe, G., ‘Year one: radiocarbon dating and American archaeology, 1947–1948’, American Antiquity (1999), 64, 932CrossRefGoogle Scholar; Taylor, R. E., ‘The beginnings of radiocarbon dating in American antiquity: a historical perspective’, American Antiquity (1985), 50, 309–25CrossRefGoogle Scholar; R. E. Taylor, A. Long and R. Kra, Radiocarbon Dating after Four Decades: An Interdisciplinary Perspective, New York, 1992.

17 On the discovery and controversy, and the process by which the Piltdown fossils were shown to be a forgery, see Spencer, op. cit. (13); C. Blinderman, The Piltdown Inquest, Buffalo, 1986; R. W. Millar, The Piltdown Men, New York, 1972.

18 Lodovico Morozzo, C., ‘Sopra I denti fossili de un elephante trovato nelle vicinanze di Roma’, Memorie di Matematica e di Fisica della Società Italiana della Scienza (Modena) (1803), 10, 162–71Google Scholar.

19 Morichini, D., ‘Analisi dello smalto di un dente fossile di elefante e dei denti umani. Memoria di Domenico Morichini presentata da Giachino Pessuti’, Memorie di Matematica e di Fisica della Società Italiana della Scienza (Modena) (1805), 12, 7388Google Scholar. This paper also appeared in the Journal für die Chimie und Physik (1806), 2, 177–87.

20 M. Heinrich Klaproth, ‘Recherches sur l'acide fluorique contenu dans un dent fossile d’éléphant', Mémoires de l'Académie royale des sciences de Berlin (1804), 136–9.

21 Berzelius, J. Jakob, ‘Extrait d'une lettre de M. Berzelius à M. Vauquelin’, Annales de chimie (1807), 61, 256Google Scholar; idem, ‘Untersuchungen über die Flußspathsäure und deren merkwürdigste Verbindungen’, Poggendorff′s Annalen der Physik und Chemie (1824), 77, 1–48; J. Jakob Berzelius, A. J. L. Jourdan and M. Esslinger, Traité de chimie, 8 vols., Paris, 1829–33.

22 E. Frémy, ‘Recherches chimiques sur les os’, Annales de chimie et de physique (1855), Ser. 3, 43, 47–107.

23 Middleton, J., ‘Comparative analysis of recent and fossil bones’, Philosophical Magazine (1844), 25, 14Google Scholar.

24 Middleton, op. cit. (23), 14–15. See also Middleton, J., ‘On fluorine in recent and fossil bones, and the sources from whence it is derived’, Philosophical Magazine (1844), 25, 261–2Google Scholar.

25 Middleton, J., ‘On fluorine in bones, its source, and its application to the determination of the geological age of fossil bones’, Proceedings of the Geological Society (London) [1843–45] (1846), 4, 432Google Scholar.

26 Middleton, op. cit. (25), 432.

27 Middleton, op. cit. (23), 15–18.

28 Middleton, op. cit. (25), 432–3.

29 Middleton, op. cit. (25), 431; original emphasis.

30 E. Rivière, ‘Le Gisement quaternaire de Billancourt (Seine)’, Association française pour l'avancement des sciences, Comptes rendus (1882), 376.

31 E. Rivière, ‘Sur l’âge des squelettes humains des grottes des Baoussé-Roussé, en Italie, dites grottes de Menton', Association française pour l'avancement des sciences, Comptes rendus (1892, part 2), 349.

32 Rivière, op. cit. (31), 348–53.

33 Rivière, op. cit. (31), 354.

34 Rivière, op. cit. (31), 357.

35 Rivière, op. cit. (31), 358.

36 E. Rivière, ‘Détermination par l'analyse chimique de la contemporanéité ou de la noncontemporanéité des ossements humains et des ossements d'animaux trouvés dans un même gisement’, Association française pour l'avancement des sciences, Comptes rendus (1892, part 2), 379.

37 Carnot, A., ‘Recherche du fluor dans les os modernes et les os fossiles’, Comptes rendus hebdomadaires des séances de l'Académie des sciences (1892), 114, 1189Google Scholar.

38 Carnot, A., ‘Sur la Composition des ossements fossiles et la variation de leur teneur en fluor dans les différentes étages géologique’, Comptes rendus hebdomadaires des séances de l'Académie des sciences (1892), 115, 244Google Scholar.

39 Carnot, A., ‘Recherches sur la composition générale et la teneur en fluor des os modernes et des os fossiles des différents âges’, Annales des mines (1893), 3, 159–64Google Scholar.

40 Carnot, op. cit. (39), 166, 170–1.

41 Carnot, op. cit. (39), 173–81; see also idem, op. cit. (38), 244–5.

42 Carnot, op. cit. (39), 183–5.

43 Carnot, op. cit. (39), 186, 190.

44 Carnot, op. cit. (39), 181.

45 Carnot, op. cit. (39), 191.

46 Carnot, op. cit. (39), 192.

47 Carnot, op. cit. (39), 192; idem, op. cit. (38), 245–6.

48 Carnot, op. cit. (39), 193–4. See also idem, ‘Sur une application de l'analyse chimique pour fixer l’âge d'ossements humains préhistorique', Comptes rendus hebdomadaires des séances de l'Académie des sciences (1892), 115, 337–9.

49 Carnot, op. cit. (39), 194–5.

50 Rivière, op. cit. (36), 379–82. See also idem, ‘Fossilisation et analyse chimique des os’, Bulletins de la Société d'anthropologie de Paris (1893), 4, 309–15.

51 Herrera, A. L., ‘El hombre prehistórico de México’, Memorias de la Sociedad Científica Antonio Alzate (1893), 7, 31–4Google Scholar.

52 The announcement of this discovery appeared in a note published in the Proceedings of the Academy of Natural Sciences of Philadelphia (1848), 3, 106–7. The discovery and debate over Natchez Man is examined by Cotter, J., ‘Update on Natchez Man’, American Antiquity (1991), 56, 36–9CrossRefGoogle Scholar.

53 Wilson, T., ‘On the presence of fluorine as a test for the fossilization of animal bones’, American Naturalist (1895), 29, 719–25CrossRefGoogle Scholar.

54 Wilson, T., ‘On the presence of fluorine as a test for the fossilization of animal bones’, American Naturalist (1895), 29, 307–17CrossRefGoogle Scholar, 439–56.

55 On Dubois's discovery and the debate over the evolutionary status of Pithecanthropus erectus see B. Theunissen, Eugène Dubois and the Ape-Man from Java: The History of the First ‘Missing Link’ and Its Discoverer, Dordrecht, 1989.

56 J. M. van Bemmelen, A. Simon Thomas and E. A. Klobbie, ‘Sur le Teneur en fluorure de calcium d'un os d’éléphant fossile de l'époque tertiare', Archives néerlandaises des sciences exactes et naturelles (1900), 229–30.

57 Oakley, K. P., ‘The fluorine-dating method’, Yearbook of Physical Anthropology (1949) (1951), 5, 44Google Scholar.

58 Leakey, L. S. B., ‘Fossil human remains from Kanam and Kanjera, Kenya Colony’, Nature (1936), 138, 643CrossRefGoogle Scholar; Boswell, P. G. H., ‘Human remains from Kanam and Kanjera, Kenya Colony’, Nature (1935), 135, 371CrossRefGoogle Scholar. The controversy over the fossils is examined in J. Reader, Missing Links: The Hunt for Earliest Man, 2nd edn, New York, 1988, 139–42.

59 Oakley, K. P., ‘Fluorine and the relative dating of bones’, Advancement of Science (1948), 4, 336Google Scholar. See also idem, op. cit. (57), 45.

60 Oakley, op. cit. (59), 336–7.

61 Newton, E. Tulley, ‘On a human skull and limb-bones found in the Palaeolithic terrace-gravel at Galley Hill, Kent’, Quarterly Journal of the Geological Society of London (1895), 51, 505–27CrossRefGoogle Scholar.

62 Evans, op. cit. (11), 607.

63 A. Keith, Ancient Types of Man, London, 1911, 28–45; W. H. L. Duckworth, ‘The problem of the Galley Hill skeleton’, in Essays and Studies Presented to William Ridgeway on his Sixtieth Birthday, 6 August, 1913 (ed. E. C. Quiggin), Cambridge, 1913, 458–73.

64 Oakley, K. P. and Montague, M. F. A., ‘A re-consideration of the Galley Hill skeleton’, Bulletin of the British Museum (Natural History). Geology Series (1949), 1, 42Google Scholar. See also K. P. Oakley, ‘Some applications of the fluorine test’, Archaeological Newsletter, 1949, 1.

65 Oakley, op. cit. (57), 46.

66 Oakley, op. cit. (64).

67 Oakley, op. cit. (57), 46.

68 Oakley, op. cit. (57), 46. This new method was described in Milton, R. F., Liddell, H. F. and Chivers, J. E., ‘A new titrimetric method for the estimation of fluorine’, Analyst (1947), 72, 43–7CrossRefGoogle ScholarPubMed.

69 Oakley, op. cit. (57), 46. This method was published in Willard, H. H. and Winter, O. B., ‘Volumetric method for determination of fluorine’, Industrial Engineering and Chemistry: Analytic Edition (1933), 5, 710Google Scholar.

70 Oakley, op. cit. (57), 47.

71 Oakley and Montagu, op. cit. (64), 43–5. See also Oakley, op. cit. (64), 1.

72 Oakley, op. cit. (64), 1.

73 Some of the key papers on the discovery are Dawson, C. and Woodward, A. Smith, ‘On the discovery of a Palaeolithic human skull and mandible in a flint-bearing gravel overlying the Wealden (Hastings Beds) at Piltdown, Fletching (Sussex)’, Quarterly Journal of the Geological Society of London (1913), 69, 117–51CrossRefGoogle Scholar; Keith, A., ‘The Piltdown skull and brain cast’, Nature (1913), 92, 107–9CrossRefGoogle Scholar, 197–9, 292, 345–6; Smith, G. E., ‘The controversies concerning the interpretations and meaning of the remains of the dawn-man found near Piltdown’, Nature (1913), 92, 468–9Google Scholar. A considerable literature exists on the Piltdown affair. The circumstances surrounding the discovery and interpretation of the fossils and the debate over them is discussed in detail in F. Spencer, op. cit. (13); C. Blinderman, The Piltdown Inquest, Buffalo, 1986; Millar, op. cit. (17); Hammond, M., ‘A framework of plausibility for an anthropological forgery: the Piltdown Case’, Anthropology (1979), 3, 4758Google Scholar.

74 Oakley, op. cit. (59), 337; idem, op. cit. (64), 1.

75 Oakley, K. P. and Randall Hoskins, C., ‘New evidence on the antiquity of Piltdown Man’, Nature (1950), 20, 380Google Scholar.

76 Oakley, K. P., ‘Relative dating of the Piltdown skull I’, Advancement of Science (1950), 6, 343–4Google Scholar; also Oakley and Hoskins, op. cit. (75), 381.

77 Oakley and Hoskins, op. cit. (75), 381–2.

78 Oakley and Hoskins, op. cit. (75), 381.

79 Oakley, op. cit. (76), 344.

80 Baden-Powell, D. F. W. and Oakley, K. P., ‘Report on the re-investigation of the Westley (Bury St. Edmunds) skull site’, Proceedings of the Prehistoric Society (1953), 18, 120CrossRefGoogle Scholar.

81 On the debate over the Fontéchevade fossils see E. Trinkhaus and P. Shipman, The Neanderthals: Changing the Image of Mankind, New York, 1993, 305–10.

82 Oakley, op. cit. (57), 47–8; Oakley, K. P. and Henri-Martin, G., ‘Application du test de la fluorine aux crânes de Fontéchevade (Charente)’, Anthropologie (1951), 55, 239–47Google Scholar.

83 Oakley, op. cit. (57), 48.

84 Trinkhaus and Shipman, op. cit. (81), 90–125, offer an informative account of the discovery and controversy surrounding the Moulin Quignon jaw.

85 Oakley, op. cit. (57), 48–9.

86 Oakley, K. P., ‘Relative dating of the fossil hominids of Europe’, Bulletin of the British Museum (Natural History) (1980), 34, 53Google Scholar.

87 See Taylor, R. E., ‘The beginnings of radiocarbon dating in American antiquity: a historical perspective’, American Antiquity (1985), 50, 311–12CrossRefGoogle Scholar; Marlowe, G., ‘W. F. Libby and the archaeologists, 1946–1948’, Radiocarbon (1980), 22, 1005–14CrossRefGoogle Scholar. On the impact of the radiocarbon dating method in archaeology see D. Wilson, The New Archaeology, New York, 1974, Chapters 4–6.

88 Weiner, J. S., Le Gros Clark, W. E. and Oakley, K. P., ‘The solution of the Piltdown problem’, Bulletin of the British Museum (Natural History) (Geology) (1953), 2, 139–46Google Scholar; Weiner, J. S. and Oakley, K. P., ‘The Piltdown fraud: available evidence reviewed’, American Journal of Physical Anthropology (1954), 12, 17CrossRefGoogle ScholarPubMed; J. S. Weiner, The Piltdown Forgery, Oxford, 1955, Chapter 4.

89 A full discussion of the evidence and the means employed by the team led by Weiner and Oakley to uncover the Piltdown hoax is provided in Weiner, op. cit. (88); Spencer, op. cit. (13), Chapter 6.

90 R. F. Heizer, ‘On the methods of chemical analysis of bone as an aid to prehistoric culture chronology’, Reports of the University of California Archaeological Survey (1950), 10–14; Heizer, R. F. and Cook, S. F., ‘Fluorine and other chemical tests of some North American human and fossil bones’, American Journal of Physical Anthropology (1952), 10, 289303CrossRefGoogle ScholarPubMed; Cook, S. F. and Heizer, R. F., ‘The present status of chemical methods for dating prehistoric bone’, American Antiquity (1953), 18, 354–8CrossRefGoogle Scholar.

91 I plan to explore the research of Heizer and Cook as well as the application of their methods by Oakley in a separate paper.

92 Oakley's later applications of the fluorine dating method are recorded in Oakley, K. P., ‘Relative dating of the fossil hominids of Europe’, Bulletin of the British Museum (Natural History) (Geology) (1980), 34, 163Google Scholar.

93 Coon, C. S., ‘Excavations in Hotu Cave, Iran, 1951, a preliminary report’, Proceedings of the American Philosophical Society (1952), 96, 231–49Google Scholar.

94 Examples of the recent use of the method can be found in Callaghan, R. T., ‘Analysis of the fluoride content of human remains from the Gray Site, Saskatchewan’, Plains Anthropologist (1986), 31, 317–28CrossRefGoogle Scholar; Haddy, A. and Hanson, A., ‘Nitrogen and fluorine dating of Moundville skeleton samples’, Archaeometry (1982), 24, 3744CrossRefGoogle Scholar; Lal, S. B., ‘Bone fluorine as a measure of relative chronology at Piprahwa’, Current Anthropology (1978), 19, 150–1CrossRefGoogle Scholar.

95 Hoskins, C. Randall and Fryd, C. F. M., ‘The determination of fluorine in Piltdown and related fossils’, Journal of Applied Chemistry (1955), 5, 85–7CrossRefGoogle Scholar.