Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T13:13:54.842Z Has data issue: false hasContentIssue false

The Laws of Motion*

Published online by Cambridge University Press:  05 January 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Presidential Address
Copyright
Copyright © British Society for the History of Science 1971

References

1 Jouguet, E., Lectures de Mécanique (Paris, 1908), vii.Google Scholar

2 Lamar Crosby, H., Jr., Thomas of Bradwardine His Tractatus de Proportionibus: its Significance or the Development of Mathematical Physics (Madison, Wisconsin, 1955), 17.Google Scholar

3 Rosenfeld, L., Nature, ccxxii (1969), 197.CrossRefGoogle Scholar

4 Clagett, Marshall, The Science of Mechanics in the Middle Ages (Madison, Wisconsin; London, Oxford University Press, 1959), 261.Google Scholar

5 Ibid., 587.

6 Ibid., 666.

7 Galileo, Galileo, Dialogue concerning the two Chief World Systems—Ptolemaic and Copernican, trs. Drake, Stillman (Berkeley and Los Angeles, 1953), 186187.Google Scholar

8 Koyré, A., Newtonian Studies (London, 1965), 6667.CrossRefGoogle Scholar

9 Herivel, J. W., The Background to Newton's Principia (Oxford, 1965), 4445.Google Scholar

10 Euler, L., “Découverte d'un nouveau principe de mécanique”, Mem. Acad. Sci. Berlin, vi (1752), 185217.Google Scholar

11 Truesdell, G., Essays in the History of Mechanics, Berlin (Heidelberg and New York, 1968), 116.CrossRefGoogle Scholar

12 Ibid., 118.

13 Ibid., 239 et seq.

14 M Truesdell's playing down of Lagrange as compared with Euler, cf. his Essays in the History of Mechanics, 133–135, reflects his own interests. Euler's work in mechanics is of great value for the classical applied mathematician interested in fluid mechanics, etc., but Lagrange's work is of more value to the theoretical physicist interested in relativity, quantum theory, particle physics, etc.

15 d'Alembert, J., Traité de Dynamique (2nd ed., Paris, 1758, ed. Hankins, T. L., New York and London, 1968), “Discours Preliminaire”, xxii.Google Scholar

16 Ibid., Introduction, pp. xxxiii-xxxiv.

17 Lanczos, C., The Variational Principles of Mechanics (Toronto, 1949), 77 (footnote).Google Scholar

18 Jacobi, C. G. J., Vorlesungen über Dynamik, ed. Clebsch, A. (Berlin, 1866), Lectures 21, 23 and 24.Google Scholar

19 Milne, E. A., Kinematic Relativity (Oxford, 1948), 75.Google Scholar

20 Sciama, D. W., Monthly Notices of the Royal Astronomical Society, cxiii (1953), 3442.CrossRefGoogle Scholar

21 Brill, D. R. and Cohen, J. M., Phys. Rev., cxliii (1966), 10111015.CrossRefGoogle Scholar

22 Bridgman, P. W., The Logic of Modern Physics (New York, 1927, reprinted 1960), 183.Google Scholar