Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T07:18:19.392Z Has data issue: false hasContentIssue false

Julius Thomsen and classical thermochemistry

Published online by Cambridge University Press:  05 January 2009

Helge Kragh
Affiliation:
Address: Magnolievangen 41, 3450 Allerød, Denmark.

Extract

Classical thermochemistry is inextricably bound up with the problem of chemical affinity. In 1851, when Julius Thomsen began his career in thermochemistry, the concept of chemical affinity had been in the centre of chemical enquiry for more than a century. In spite of many suggestions, preferably to explain affinity in terms of electrical or gravitational forces, almost nothing was known about the cause and nature of affinity. In this state of puzzling uncertainty some chemists felt it more advantageous to establish an adequate experimental measure of affinity, whatever its nature was. One way of providing affinity with a quantitative description was by means of the heats evolved in chemical processes.

Type
Research Article
Copyright
Copyright © British Society for the History of Science 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Levere, T. L., Affinity and matter. Elements of chemical philosophy 1800–1865, Oxford, 1971Google Scholar. Of relevance to the present subject are also Schelar, V. M., ‘Thermochemistry and the third law of thermodynamics,’ Chymia, 1966, 11, 99124CrossRefGoogle Scholar, and Raman, V. V., ‘The permeation of thermodynamics into nineteenth century chemistry,’ Indian journal of history of science, 1975, 10, 1637.Google Scholar

2 Leicester, H. M., ‘Germain Henri Hess and the foundation of thermochemistry,’ J. chem. ed., 1951, 28, 581583CrossRefGoogle Scholar. Hess' papers are reprinted in Ostwald's Klassiker der exakten Wissenschaften, no. 9, Leipzig, 1921.Google Scholar

3 Helmholtz, H., Über die Erhaltung der Kraft, Berlin, 1847, 32.Google Scholar

4 Favre, P. A. and Silbermann, J. T., ‘Recherches sur les quantités de chaleur dégagées dans les actions chimiques et moléculaires,’ Ann. chim. phys., 1853, 37, 406508.Google Scholar

5 Levere, , op. cit. (1), 202Google Scholar. Partington, J. R., A history of chemistry, 4 vols., London 19611970, IV, 608612.Google Scholar

6 Kragh, H., ‘Julius Thomsen and 19th century speculations on the complexity of atoms,’ Annals of science, 1982, 39, 3760CrossRefGoogle Scholar. For Colding and his debt to Ørsted, see Dahl, P. F., ‘Ludwig A. Colding and the conservation ot energy,’ Centaurus, 1963, 8, 174188CrossRefGoogle Scholar. Extracts of Colding's work of 1851 is translated in Lindsay, B. Bruce (ed.), Energy: historical development of the concept, Stroudsburg (Pennsylvania), 1975, 361364.Google Scholar

7 Thomsen, J., ‘Bidrag til et thermochemisk system,’ Kgl. Da. Vid. Selsk. Skr., Mat.-Nat.Afd. (5), 1852, 3, 115165Google Scholar; ‘Die Grundzüge eines thermochemisches Systems,’ [Poggmdorf's] Annalen, 1853, 88, 349362Google Scholar; 90, 261–288; 91, 83–104; 92, 34–57.

8 Thomsen, J., ‘Om de chemiske processers almindelige character og en på denne bygget affinitetslære,’ Kgl. Da. Vid. Selsk. Oversigter, 1861, 100134, on 104.Google Scholar

9 ‘Grundzüge,’ op. cit. (7), 1854, 92, 34.Google Scholar

10 Ibid., 36.

12 In the Danish version of 1852 a purely chemical action was stated to be one which is ‘solely caused by the innate forces of the substances’ (p. 157). Thirty years later the criterion read that the process ‘proceeds without the expenditure of external energy and is accomplished only through striving of the atoms towards more stable equilibrium.’ Thomsen, J., Thermochemische Untersuchungen, 4 vols., Leipzig, 18821886, I, 16.Google Scholar

13 See Kragh, , op. cit. (6).Google Scholar

14 ‘Grundzüge,’ op. cit. (7), 1853, 90.Google Scholar

15 Thomsen, J., ‘Thermochemische Untersuchungen. I, Über die Bertholletsche Affinitätstheorie,’ [Poggendorf's] Annalen, 1869, 138, 65102Google Scholar. Guldberg, C. M. and Waage, P., Études sur les affinités chimique, Christiania (Oslo), 1867Google Scholar. Lund, E. W., ‘Guldberg and Waage and the law of mass action,’ J. chem. ed., 1965, 42, 548550.CrossRefGoogle Scholar

16 Études, op. cit. (15), 15.Google Scholar

17 Berthelot, M., ‘Recherches de thermochimie,’ Ann. chim. phys., 1865, 6, 290464Google Scholar. Crosland, M. P., ‘Berthelot, Pierre Eugène Marcellin,’ in Gillispie, C. C. (ed.), Dictionary of scientific biography, New York, 19701980, II, 6372.Google Scholar

18 Berthelot, M., ‘Nouvelles recherches de thermochimie,’ Ann. chim. phys., 1869, 18, 5201Google Scholar; ‘Recherches calorimétrique sur l'etat des corps dans les dissolutions,’ Ann. chim. phys., 1873, 29, 433514Google Scholar; ‘Sur les principes géneraux de la thermochimie,’ Ann. chim. phys., 1875, 4, 5131, 141213.Google Scholar

19 Berthelot, M., Essai de mécanique chimique fondée sur la thermochimie, 2 vols., Paris, 1879Google Scholar; Thermochimie: données et lois numerique, 2 vols., Paris, 1897.Google Scholar

20 Berthelot, , op. cit. (17).Google Scholar

21 Berthelot, M., Lecons sur les méthodes générales de synthèse, Paris, 1864, on 399.Google Scholar

22 Berthelot, , op. cit. (18), 1875, 52.Google Scholar

23 Ibid., 212.

24 Dumas, M., ‘Remarques sur l'affinité,’ Compte rendu, 1868, 67, 597614, on 607.Google Scholar

25 Mécanique chimique, op. cit. (19), 1, X.Google Scholar

26 Thomsen, J., ‘Die völlige Ungüldigkeit der von Berthelot … berechneten Zahlenwerte,’ Chem. Ber., 1872, 5, 181185, on 185.CrossRefGoogle Scholar

27 Thomsen, J., ‘Eine Prioritätsfrage bezüglich einiger Grundsätze der Thermochemie,’ Chem. Ber., 1873, 6, 423428.CrossRefGoogle Scholar

28 Berthelot, M., ‘Sur la réclamation de priorité élevée par M. J. Thomsen relativement aux principes de la thermochimie,’ Bul. soc. chim. Paris, 1873, 19, 485489.Google Scholar

29 According to Wurtz, A. (ed.), Dictionnaire de chimie, Paris, 18691870, II, 824.Google Scholar

30 See, e.g., the views of Paul Sabatier, Victor Grignard and Pierre Duhem as quoted in Nye, M. J., ‘Berthelot's anti-atomism: a ‘matter of taste’?Annals of science, 1981, 38, 585590CrossRefGoogle Scholar. Also in Metz, A., ‘La notation atomique et la théorie atomique en France a la fin du XIXe siècle,’ Revue d'historie des sciences, 1963, 16, 233239, on 236.Google Scholar

31 In obituary articles the personality of the deceased is often idealized. In Edward Thorpe's memorial lecture one reads however about Thomsen's ‘cold and unsympathetic nature [which] evoked no warmer feelings.’ Thorpe, E., ‘Thomsen memorial lecture,’ J. Chem. Soc. London, 1910, 97, 161172, on 165CrossRefGoogle Scholar. Similarly Niels Bjerrum, a student of Thomsen: ‘Thomsen was of a vehement and fiery nature. He could rise against his opponents quite without self-command …,’ Bjerrum, N., ‘Julius ThomsenChem. Ber., 1909, 42, 49714988, on 4977.CrossRefGoogle Scholar

32 Experimenticism is the extreme empiricist doctrine that experiments and accurate measurements have absolute priority in the analysis of scientific work. The term was introduced and exemplified by Holton, Gerald in ‘Einstein and the ‘crucial’ experiment,’ Am. j. phys., 1969, 37, 968982.CrossRefGoogle Scholar

33 Thomsen, J., ‘Ueber Genauigkeit thermochemischer Zahlenresultate,’ Chem. Ber., 1878, 11, 21832188.CrossRefGoogle Scholar

34 Berthelot, M., ‘Sur la chaleur de dissolution du sulfate de soude,’ Ann. chim. phys., 1878, 14, 445452.Google Scholar

35 Favre, M. P. A., ‘Réclamation relative a une note de M. J. Thomsen,’ Bul. soc. chim. Paris, 1874, 21, 487.Google Scholar

36 Duhem, P., ‘Thermochimie,’ Revue des questions scientifique, 1897, 12, 361392, on 363364 and 368Google Scholar. Reviewing Berthelot's Thermochimie Duhem took the opportunity to launch a strongly worded attack on Berthelot and his position in French chemistry. According to Duhem, Berthelot's principle was a ‘ridiculous tautology’ (370). In 1884 Duhem's doctoral dissertation which contained an attack on the principle of maximum work was rejected as a result of its questioning thermochemical orthodoxy; it was published as a book two years later as Le potentiel thermodynamique (Paris, 1886)Google Scholar. See Miller, D. G., ‘Pierre Duhem’, Physics today, 12 1966, 4753.CrossRefGoogle Scholar

37 Muir, M. M. Pattison, Principles of chemistry, London, 1884Google Scholar; Ostwald, W., Lehrbuch der allgemeinen Chemie, 2 vols., Leipzig, 18921893, 11/1, 64Google Scholar; von Meyer, E., Geschichte der Chemie, Leipzig, 1889, 383.Google Scholar

38 Proc. Roy. Soc. London, 1883, 36, 74.Google Scholar

39 Harry Jones, an American chemist of the Ostwald school, described Thomsen as ‘the type of mind that delights in accurate experimental work’; while Berthelot was ‘not the type of mind to be limited to fine experimental work. … Berthelot made thermochemical measurements for a definite purpose, and that was to see to what far-reaching conclusions they would lead.’ Jones, H. C., A new era in chemistry New York, 1913, 36.Google Scholar

40 Paul, H. W., The sorcerer's apprentice. The French scientist's image of German science 1840–1919 Gainesville (Florida), 1972.Google Scholar

41 Thomsen, J., ‘Thermochemische Untersuchungen über die Theorie der Kohlenstoffverbindungen,’ Chem. Ber., 1880, 13, 13211334CrossRefGoogle Scholar; Thermochemische Untersuchungen, op. cit. (12), IV.Google Scholar

42 Kekulé, A., Lehrbuch der organischen Chemie, 2 vols., Erlangen, 1866, II, 496.Google Scholar

43 Ladenburg, A., ‘Ueber Benzolformeln,’ Chem. Ber., 1869, 2, 272274CrossRefGoogle Scholar. A diagonal structure, similar to that proposed by Ladenburg, was forwarded by Claus, A. in his Theoretische Betrachtungen und deren Anwendungen zur Systematik der organischen Chemie, Freiburg, 1867, 207208Google Scholar. For other candidates and background to the problem of the structure of benzene, see Russell, C. A., The history of valency, Leicester, 1971, ch. 9.Google Scholar

44 Thomsen, J., ‘Die Constitution des Benzols,’ Chem. Ber., 1880, 13, 18081811CrossRefGoogle Scholar; ‘Zur Benzolformel,’ Chem. Ber., 1880, 13, 21662168.Google Scholar

45 Ibid., 1810.

46 Ibid., 1811.

47 Thomsen, J., ‘Om benzolmolekylets konstitution,’ Kgl. Da. Vid. Selsk. Oversigter, 1886, 179186.Google Scholar

48 Armstrong, H. E., ‘The determination of the constitution of carbon compounds from thermochemical data,’ Phil, mag., 1887, 23, 73109CrossRefGoogle Scholar. Armstrong proposed a ‘centric’ formula which agreed with the nine single bonds suggested by Thomsen.

49 Quoted from Bjerrum, , op. cit. (31), 4983Google Scholar. This letter, as well as most other letters and unpublished materials which Thomsen left at his death, seems to have been lost. The archive of the Royal Library in Copenhagen includes eight boxes with source materials on Thomsen but nothing of particular interest to the history of chemistry. The Wilhelm-Ostwald-Archiv in Berlin (GDR) owns a small number of letters from Thomsen to Ostwald.

50 Jahn, H., Die Grundsätze der Thermochemie, Vienna, 1882, 147.Google Scholar

51 Cooke, J. P., ‘Notice of Julius Thomsen's thermochemical investigation of the molecular structure of the hydrocarbon compounds,’ Am. j. sci., 1881, 21, 8798, on 98.CrossRefGoogle Scholar

52 Muir, Pattison, op. cit. (37), 174f and 303fGoogle Scholar; Mendeléev, D. I., ‘Ueber die Verbrennungswärme der Kohlenwasserstoffe,’ Chem. Ber., 1882, 15, 15551559.Google Scholar

53 Armstrong, , op. cit. (48)Google Scholar; Pickering, S. U., ‘Note on the foregoing communication,’ Phil, mag., 1887, 23, 109112CrossRefGoogle Scholar; ‘On thermochemical constants,’ Phil, mag., 1888, 26, 5362.Google Scholar

54 Stohmann, F., Rodatz, P. and Herzberg, H., ‘Ueber den Wärmewerthe des Benzols,’ J. prakt. Chemie, 1886, 33, 241260CrossRefGoogle Scholar. Stohmann adopted the calorimetric technique developed by Berthelot and his pupils; in 1887 he worked in Berthelot's laboratory where he was introduced to the bomb calorimeter.

55 Thomsen, J., ‘Ueber die Verbrennungswärme des Benzols,’ J. prakt. Chemie, 1886, 33, 564567CrossRefGoogle Scholar; Stohmann, F., ‘Entgegnung zu vorstehender Abhandlung des Herrn Thomsen,’Google Scholaribid., 568–576; ‘Zur weiteren Beleuchtung der Untersuchungen des Herrn Julius Thomsen,’ J. prakt. Chemie, 1887, 35, 136141Google Scholar. Exchange of views between Thomsen, and Stohmann, in J. prakt. Chemie, 1886, 34, 5556.CrossRefGoogle Scholar

56 Brühl, J. W., ‘Kritik der Grundlagen und Resultate der sogenannten Theorie der Bildungswärme organischer Körper,’ J. prakt. Chemie, 1887, 35, 181204, 209236.CrossRefGoogle Scholar

57 Ostwald, W., Zs. phys. Chemie, 1887, 1, 201Google Scholar. Most of Ostwald's early contributions to chemistry were in the tradition of Thomsen whose approach to the problem of affinity inspired him much. For Ostwald's indebtedness to Thomsen, see Ostwald, W., Lebenslinien. Eine Selbstbiographie, 3 vols., Berlin, 1926.Google Scholar

58 Thomsen sought, apparently in vain, to convince Ostwald that his thermochemical data on organic substances were superior to those of Berthelot and Stohmann and ought to be republished in Zeitschrift für physikalische Chemie. Referring to the omission of his organic data in the third edition of Landolt's physikalisch-chemischen Tabellen Thomsen protested against ‘such an outrageous treatment from the side of one of the main works in German literature.’ Letter from Thomsen, to Ostwald, , 01 27, 1905Google Scholar. I am grateful to the Wilhelm-Ostwald-Archiv for sending me copies of the Thomsen-Ostwald correspondence.

59 Clarke, F. W., ‘A new law in thermochemistry,’ Proc. Washington Acad. sci., 1903, 5, 137Google Scholar; Thomsen, J., ‘F. W. Clarkes neues thermochemisches Gesetz,’ Zs. phys. Chemie, 1903, 43, 487493.Google Scholar

60 Thomsen, J., ‘Thermochemische Untersuchungen, XVII,’ J. prakt. Chemie, 1874, 11, 261283Google Scholar; Nernst, W., ‘Über die Bildungswärme der Quecksilberverbindungen,’ Zs. phys. Chemie, 1888, 2, 2328.Google Scholar

61 Thomsen, , Zs. phys. Chemie, 1888, 2, 2122Google Scholar; letter from Thomsen, to Ostwald, , 12 12, 1887 (Wilhelm-Ostwald-Archiv).Google Scholar

62 Körber, H-G. (ed), Aus dem wissenschaftlichen Briefwechsel Wilhelm Ostwald, 2 vols., Berlin(GDR), 1961, II, 41.Google Scholar

63 Meyer, L., ‘Die bisherigen Entwickelung der Affinitätslehre,’ Zs. phys. Chemie, 1, 1887, 134144, on 140 and 143.Google Scholar

64 Naumann, A., Grundriss der Thermochemie, Braunschweig, 1869, 2Google Scholar. An extended and updated version of Naumann's work, much in use in Germany, appeared in 1882 as Lehr- und Handbuch der Thermochemie. Friedrich Mohr wrote on chemical affinity in the same vein, see his Mechanische Theorie der chemischen Affinität, Braunschweig, 1868.Google Scholar

65 Jahn, , op. cit. (50), 205.Google Scholar

66 Berthelot, M., ‘Atomes et équivalents,’ Comptes rendus, 1877, 84, 12691276Google Scholar. Nye, M. J., Molecular reality, London, 1972, 7Google Scholar. See also Levere, , op. cit. (1), 207211Google Scholar and Nye, , op. cit. (30).Google Scholar

67 Deville, H. Sainte-Claire, Lecons sur la dissociation, Paris, 1866.Google Scholar

68 van der Kolk, H. W. Schröder, ‘Ueber die mechanische Energie der chemischen Wirkungen,’ [Poggendorf's] Annalen, 1864, 122, 439454, on 452.Google Scholar

69 Rayleigh, Lord, ‘On the dissipation of energy,’ Nature, 1875, 11, 454455 (Royal Institution lecture).Google Scholar

70 Potilitzin, A., Chem. Ber., 1879, 12, 23692374.Google Scholar

71 Muir, Pattison, op. cit. (37), 446Google Scholar. For other contemporary criticism, see Rathke, B., ‘Ueber die Principien der Thermochemie,’ Abhandl. d. Naturf. Ges. zu Halle, 1882, 15, 197227Google Scholar; Meyer, L., Die modernen Theorien der Chemie, 4th edn., Breslau, 1883Google Scholar; Duhem, P., Le potentiel thermodynamique, Paris, 1886.Google Scholar

72 Thomsen, , op. cit. (27), 428.Google Scholar

73 In particular through the works of Helmholtz, and Helmholtz, van't Hoff. H., ‘Zur Thermodynamik chemischer Vorgänge,’ Sitzungsber. Akad. Wiss. Berlin, 1882, 1, 2139, 825836Google Scholar. van't Hoff, J. H., Études de dynamique chimique, Amsterdam, 1884.Google Scholar

74 Thermochemische Untersuchungen, op. cit. (12), II, 1883, 428.Google Scholar

75 In 1894 Berthelot admitted that the principle of maximum work has no general validity; he argued that it was a primitive version of the law of entropy. Berthelot, M., ‘Le principe du travail maximum et l'entropie,’ Comptes rendus, 1894, 118, 13781392.Google Scholar

76 The controversy between thermochemistry and thermodynamically based physical chemistry will be the subject of a forthcoming paper of R. G. A. Dolby. I am grateful to Dr. Dolby for his critical remarks to earlier versions of the present paper.

77 Clarke, , op. cit. (59), 2.Google Scholar

78 Nye, , op. cit. (30).Google Scholar