Published online by Cambridge University Press: 05 January 2009
The Berthollet-Proust controversy and Dalton's atomic theory are two important historical landmarks which appeared almost simultaneously at the very beginning of the nineteenth century. Therefore it is likely that between the theory of definite proportions—one of the main subjects of the controversy–and Dalton's atomic theory there was an important interrelation, and that they reinforced each other. Kapoor has suggested that Proust could not have been the forerunner of Dalton's law of constant and multiple proportions, because Dalton discovered his law from completely different premises, and does not seem to have got his ideas from Proust. In my opinion, however, his conclusion does not seem to be decisive.
I am most grateful to Dr David M. Knight of Durham University for patiently reading a draft of this paper and giving me valuable suggestions and advice, and also to a anonymous referee of this journal for offering many useful suggestions. I would also like to thank the staff of Durham University Library and the Library of Tokyo Institute of Technology for their assistance in obtaining materials required for the study.
1. The important articles on the controversy are Holmes, F. L.: ‘From Elective Affinities to Chemical Equilibria: Berthollet's Law of Mass Action’. Chymia, (1962), 8, p. 105–145CrossRefGoogle Scholar; Kapoor, S. C.: ‘Berthollet, Proust, and Proportions’. Chymia, (1965), 10, p. 53–110CrossRefGoogle Scholar; Sadoun-Goupil, M.: Le Chemiste Claude-Louis Berthollet. Paris, 1977, ch. VIII, p. 195–208Google Scholar; The older ones are Meldrum, A. N.: ‘The Development of the Atomic Theory: (1) Berthollet's Doctrine of Variable Proportions’. Manchester Memoirs, (1910), liv, No.7, p. 1–16Google Scholar; Freund, I.: The Study of Chemical Compostion. Cambridge, 1904Google Scholar; reprinted, New York, 1968, chapter V, especially p. 127–143; Partington, J. R.: A History of Chemistry, 5 vols, London, 1961–1970, iii, ch. XIV, especially p. 644–653.Google Scholar
2. Kapoor, ibid., 87n.
3. Berthollet, C. L.: Essai de Statique Chimique. 2 vols, Paris, 1803Google Scholar; reprinted, Bruxelles, 1968, i, p. 339.
4. Proust, J. L.: ‘Recherches sur le bleu de Prusse’.Ann. de. chim. (1797), 23, p. 101.Google Scholar
5. Kapoor, , op. cit. (1), p. 94–98.Google Scholar
6. Proust, : ‘Sur les sulfures métalliques’. J. de phys., (1804), 59, p. 261.Google Scholar
7. Proust, : ‘Memoire pour servir a l'histoire de l'antimoine’. J. de phys., (1802)-2 55, p. 335.Google Scholar
8. Mauskopf, S. H.: ‘Crystals and Compounds’. Trans. Am. Phil. Soc. (1967), 66, part III, section I and II, p. 7–20.Google Scholar
9. Nash, L. K.: ‘The Origin of Dalton's Chemical Atomic Theory’, Isis, (1956), 47, p. 101–116CrossRefGoogle Scholar; Guerlac, H.: ‘Some Daltonian Doubts’. Isis, (1961), 52, p. 544–554CrossRefGoogle Scholar; Siegfried, R.: ‘Further Daltonian Doubts’, Isis, (1963), 54, p. 480–481Google Scholar; Thackray, A. W.: ‘The Emergence of Dalton's Chemical Atomic Theory: 1801–1808’. Br. J. Hist. Sci. (1966), 3, Pt. 1, p. 1–22CrossRefGoogle Scholar; ‘The Origin of Dalton's Chemical Atomic Theory: Daltonian Doubts Resolved’. Isis, (1966), 57, p. 35–55Google Scholar; John Dalton: Critical Assessments of His Life and Science. Massachusetts, 1972Google Scholar; Mauskopf, S. H.: ‘Haüy's model of Chemical Equivalence: Daltonian Doubts Exhumed’. Ambix, (1970), 17, No. 3, p. 182–191CrossRefGoogle Scholar; Fleming, R. S.: ‘Newton, Gases, and Daltonian Chemistry: The Foundations of Combination in Definite Proportions’. Ann. Sci. (1974), 31, p. 561–574CrossRefGoogle Scholar; Smeaton, W. A.: ‘Berthollet's Essai de statique chimique and its translations: A Biographical Note and a Daltonian Doubt’. Ambix, (1977), 24, No.3, p. 149–158CrossRefGoogle Scholar; (1978), 25, No. 3, p. 211; Cole, T. Jr ‘Dalton, Mixed Gases, and the Origin of the Chemical Atomic Theory’. Ambix, (1978), 25, No.2, p. 117–130.CrossRefGoogle Scholar
11. Smeaton, , op. cit. (9).Google Scholar
12. Roscoe, H. E. & Harden, A..: A New View of the Origin of Dalton's Atomic Theory. London, 1896; reprinted, New York and London, 1970, p. 79.Google Scholar
13. Meldrum, A. N.: ‘The Development of the Atomic Theory: (2) The Various Accounts of the Origin of Dalton's Theory. Manchester Memoirs, (1910). lv. No. 3, p. 4.Google Scholar
14. Thackray, , op. cit. (9)Google Scholar, ‘The Origin’, p. 53.Google Scholar
15. Dalton, J.: A New System of Chemical Philosophy, 2 vols, Manchester, 1808–1827; reprinted, London, i, part I, p. 142.Google Scholar
16. Proust, , op. cit. (4), p. 85–101Google Scholar; Nicholson's J. (1798), 1, p. 453–457.Google Scholar
17. Proust, ibid., Nicholson's J. p. 457.Google Scholar
18. Proust, : ‘Recherches sur l'etain’. Ann. de chim. (1798), 28, p. 213–222Google Scholar; Nicholson's J.. (1799), 2, p. 515–518.Google Scholar
19. Proust, : ‘Sur Quelques sulfures métalliques’ J. de Phys. (1801), 53, p. 89–97Google Scholar; Nicholson's J. (1802), 6, p. 268–275.Google Scholar
20. Proust, : ‘Sur les sulfures natifs et artificiels du fer’. J. de phys. (1802), 54, p. 89–95Google Scholar; Nicholson's J. (1802), 6, p. 268–275.Google Scholar
21. Proust, , op. cit. (6), p. 260–265Google Scholar; Phil Mag. (1805), 21, p. 208–213.Google Scholar
22. Thomson, T.: A System of Chemistry. 1st edn. 4 vols, Edinburgh, 1802, i, p. 116.Google Scholar
23. Thomson, ibid., i, p. 124.
24. Thomson, ibid., i, p. 169.
25. Thomson, ibid., i, p. 184.
26. Thomson, ibid., i, p. 230.
27. Thomson, ibid., iii, p. 195
28. Thomson, ibid., iii, p. 196–197.
29. Thomson, ibid., iii, p. 197.
30. Thomson, ibid., iii, p. 198.
31. Thomson, ibid., iii, p. 199.
32. Thomson, ibid., iii, p. 199–202.
33. Thomson, ibid., iii, p. 202.
34. Mauskopf, : ‘Thomson before Dalton’. Ann. Sci. (1969), 25, p. 237.CrossRefGoogle Scholar
35. Dalton, : ‘New Theory of the Constitution of Mixed Gases Elucidated’. Phil Mag. (1802), 14, p. 169–173CrossRefGoogle Scholar; Nicholson's J. (1802), 3, p. 267–271.Google Scholar
36. Henry, W. C.: Memoirs of the Life and Scientific Researches of John Dalton. London, 1854, p. 84–85.Google Scholar
37. Thackray, , op. cit. (9)Google Scholar, ‘The Origin’ Greenway, F.: John Dalton and the Atom. New York, 1966, p. 136–137, p. 234–236Google Scholar; Patterson, E. C.: John Dalton and the Atomic Theory. New York, 1970, p. 197–199.Google Scholar
38. Guerlac, , op. cit. (9).Google Scholar
39. Guerlac, ibid., p. 552.
40. Smeaton, , op. cit. (9).Google Scholar
41. Dalton, : ‘Experimental Enquiry into the Proportion of Several Gases or Elastic Fluid, Constituting the Atmosphere’. Manchester Memoirs, (1805), II, 1, p. 244–258.Google Scholar
42. Roscoe, & Harden, , op. cit. (12), p. 37–38.Google Scholar
43. Dalton, , op. cit. (41), p. 250.Google Scholar This paper was originally read to the Manchester Lit. and Phil. Society on 12 November 1802. But it might have been revised before publication, for Dalton was one of the secretaries of the Society since 1800, and thus he could probably have revised his manuscript before printing.
44. Patterson, , op. cit. (37), p. 99Google Scholar; Guerlac, , op. cit. (9), p. 551Google Scholar; Meldlrum, : ‘The Development of the Atomic Theory: (5) Dalton's Chemical Theory’. Manchester Memoirs, (1911), lv, No. 6. 13Google Scholar; Roscoe, & Harden, , op. cit. (12). p. 33.Google Scholar
45. Proust, , op. cit. (4), p. 85.Google Scholar The English translation appeared in the Nicholson's J.: ‘A great number of facts prove, on the contrary, that iron does not rest indifferently at all the different degrees of oxidation between the two terms above mentioned’, (op. cit. (16), Nicholson's J. p. 453).Google Scholar
46. In 1804 Proust wrote: ‘Si la nature ou l'art ne nous offrent nulle part des rapport intermédiates entre ces terms, nous ne devons done pas nous presser d'admettre sulfuration variable’. (Proust, , op. cit. (6) p. 261Google Scholar; Phil. Mag. (1805), 21, p. 209).Google Scholar
47. Dalton, , op. cit. (41), p. 250Google Scholar
48. Cole, Jr, op. cit. (9).Google Scholar
49. Thomson, : ‘Chemistry’. In: Supplement to the Third Edition of the Encyclopaedia Britannica or A Dictionary of the Arts, Sciences and Miscellaneous Literature. 2 vols, Edinburgh, 1801, i, p. 249.Google Scholar
50. Thomson, ibid., p. 249.
51. Mauskopf, , op. cit. (34), p. 229–242.Google Scholar
52. Mauskopf, ibid., p. 230–231.
53. Thomson, , op. cit. (49), p. 343.Google Scholar
54. Thomson, ibid., p. 343.
55. Thomson, : A System of Chemistry. 3rd edn., 5 vols, Edinburgh, 1807, iv, p. 7.Google Scholar
56. Thomson, ibid., iii, p. 424–429. Therefore Thackray has concluded that: ‘The particular development of Dalton, which distinguishes his chemical atomic theory from earlier work, was his devising of an effective system to obtain these relative particle weights from currently available chemical data’, (Thackray, , op. cit. (9) ‘The Origin’, p. 37.Google Scholar
57. Thomson, , ‘On Oxalic Acid’. Phil. Trans. (1808), 63–95.Google Scholar
58. Thomson, ibid., p. 87.
59. Thomson, ibid., p. 88.
60. Thomson, : ‘On the Daltonian Theory of Definite Proportions in Chemical Combinations’. Ann. Phil. (1813), 2, p. 32–52, 109–115, 167–171, 293–301Google Scholar; (1814), 3, p. 134–140, 375–378; (1814), 4, p. 11–18, 83–89.
61. Thomson, : A System of Chemistry. 5th edn., 4 vols, Edinburgh, 1817, i. p. 19.Google Scholar
62. Thomson, : The History of Chemistry. 2 vols, London, 1831Google Scholar; reprinted. New York, 1975, ii, p. 160.
63. Thomson, ibid., ii, p. 162.
64. Thomson, ibid., ii, p. 163.
65. Kapoor, , op. cit. (1), p. 107–108.Google Scholar
66. Davy, H.: ‘On Some Chemical Agencies of Electricity’. Phil. Trans. (1807)Google Scholar; Collected Works, 9 vols London, 1839–1840Google Scholar, reprinted, New York and London, 1972, v, p. 41.
67. Söderbaum, H. G., ed.: Jac. Berzelius Bref. 6 vols., Stockholm and Uppsala, 1912–1932, i(ii), p. 22.Google Scholar
68. Davy, H.: ‘On Some New Electro-Chemical Researches, on Various Objects, particularly the Metallic Bodies, from the Alkalies and Earths, and on Some Combinations of Hydrogen’. Phil. Trans. (1810), Works, v, p. 271–272.Google Scholar
69. Davy, ibid., p. 272n.
70. Davy, : ‘Researches on the Oxymuriatic Acid, Its Nature and Combinations; and on the Elements of the Muriatic Acid: with Some Experiments on Sulphur and Phosphrous, made in the Laboratory of the Royal Institution’. Phil. Trans. (1810), Works, v, p. 310.Google Scholar
71. Davy, : ‘On Some of the Combinations of Oxymuriatic Gas and Oxygen, and on the Chemical Relations of these Principles, to Inflammable Bodies’. Phil. Trans. (1811), Works, v, p. 328n.Google Scholar
72. Davy, , op. cit. (70), p. 297.Google Scholar
73. Davy, , Elements of Chemical Philosophy. London, 1812, Works, iv, p. 85.CrossRefGoogle Scholar
74. Holmes, , op. cit. (1), p. 118.Google Scholar
75. Davy, , op. cit. (73), p. 85–86.Google Scholar
76. Holmes, , op. cit. (1), p. 118.Google Scholar
77. Davy, , op. cit. (73), p. 87.Google Scholar
78. Davy, ibid., p. 89.
79. Davy, ibid., p. 83.
80. Goodman, D. G.: ‘Wollaston and the Atomic Theory of Dalton’. Hist. Stud. Phy. Sci. (1967), 1, p. 37–59.Google Scholar
81. Wollaston, W. H.: ‘On Super-acid and Sub-acid Salts’. Phil. Trans. (1808), p. 96–102.Google Scholar
82. Wollaston, ibid., p. 101.
83. Wollaston, : ‘On the Elementary Particles of Certain Crystals’. Phil. Trans. (1813), p. 51–63.Google Scholar
84. Wollaston, : ‘A Synoptic Scale of Chemical Equivalents’. Phil. Trans. (1814), p. 1–22.Google Scholar
85. Wollaston, ibid., p. 7.
86. Wollaston, ibid., p. 4.
87. The paper Wollaston referred to is; Berthollet, : ‘Sur les rapports quantité dans les élémens des combinaisons’. Mém. de Phys. et de Chim. de la Soc. d'Arcueil, (1809), 2, p. 470–484Google Scholar; reprinted, New York and London, 1967. In fact, Berthollet repeated and extended Wollaston's experiments and concluded the possibility of the formation of intermediate combinations, other than those in simple or multiple proportions.
88. Wollaston, , op. cit. (84), p. 6.Google Scholar
89. Wollaston, : ‘On the Finite Extent of the Atmosphere’. Phil. Trans. (1822), p. 89–98.Google Scholar
90. Wollaston, ibid., p. 91.
91. Goodman, , op. cit. (80), p. 58.Google Scholar
92. Thenard, L. J.: ‘Les différenes états de l'oxide d'antimoine, et ses combinaisons avec l'hydrogen sulfuré’. Ann. de chim. (1799), 32, p. 257–269.Google Scholar
93. Thenard, : ‘Sur les différentes combinaisons du cobalt avec oxigène, suivie de quelques observations sur plusieurs sels ammoniacométalliques’. Ann. de chim. (1802), 42, p. 210–219.Google Scholar
94. Berthollet, , op. cit. (3), ii, p. 372.Google Scholar
95. Thenard, : ‘Considerations sur l'oxidation des métaux en general, et en particulier sur l'oxidation du fer’. Ann. de chim. (1805), 56, p. 62.Google Scholar
96. Thenard, ibid., p. 63.
97. Thenard, : Traité de Chimie Élémentaire, Théorique et Pratique, troisième, éd., Paris, 4 vols, 1821, i, p. 19.Google Scholar
98. Gay-Lussac also referred to Dalton's ideas as part of a ‘system’. He wrote: ‘M. Dalton a été conduit à cette idée par des consideration systématiques, et on voit par son ouvrage New System of Chemical Philosophy, p. 213’. (Gay-Lussac, : ‘Sur la combinaisons des substances gazeuses, les unes avec les autres’. Mém. de Phys. et de Chim. de la Soc. d'Arcueil, (1809), 2, p. 209nGoogle Scholar; reprinted, New York and London, 1967.) According to Crosland, the word ‘system’ reflected the eighteenth century French distrust of the over-ambitious Descartes (Crosland, M.: Gay-Lussac Scientist and Bourgeois. Cambridge, 1978, p. 139).CrossRefGoogle Scholar
99. Thenard, , op. cit. (97), p. 23–24.Google Scholar
100. Gay-Lussac, J. L.: ‘Sur les précipitations mutuelles des oxides métalliques’. Ann. de chim. (1804), 49, p. 21–35.Google Scholar
101. Gay-Lussac, , op. cit. (98), p. 207–234.Google Scholar
102. Gay-Lussac, ibid., p. 218.
103. Crosland, M.: ‘The First Reception of Dalton's Atomic Theory in France’. In: Cardweii, D.S.L., ed,: John Dalton and the Progress of Science. Manchester and New York, 1968, p. 274–289, especially p. 227–278.Google Scholar
104. Dalton, : ‘Letter to Berzelius’Google Scholar. In: Roscoe, & Herden, , op. cit. (12), p. 159.Google Scholar
105. Crosland, , op. cit. (98), p. 138.Google Scholar
106. Gay-Lussac, : Cours de Chimie. 2 vols, Paris, 1828, i, p. 8.Google Scholar
107. Gay-Lussac, ibid., i, p. 9–10.
108. Gay-Lussac, ibid., i, p. 12.
109. Crosland, , op. cit. (98), p. 138.Google Scholar
110. Hassenfratz, J. H.: ‘Sur l'oxidation du fer’. Ann. de chim. (1808), 67, p. 309–319.Google Scholar
111. Hassenfratz, ibid., 311.
112. Hassenfratz, ibid., 319.
113. Hassenfratz, : ‘Observations et discussion sur lex oxides de fer’. Ann. de chim. (1809), 69, p. 113–154.Google Scholar
114. Haussmann, J. M.: ‘Extrait d'une lettre de M. Jean-Michel Haussmann, à M. Berthollet’. Ann. de. chim. (1805), 56, p. 5–14.Google Scholar
115. Scott, E. L.: ‘Dalton and William Henry’Google Scholar. In: Cardwell, D.S.L., ed, op. cit. (103), p. 233.Google Scholar
116. Henry, W.: The Elements of Experimental Chemistry. 6th edn, 2 vols, London, 1810, i, p. 81–82.Google Scholar
117. Scott, , op. cit. (115), p. 233.Google Scholar
118. Henry, : The Elements of Experimental Chemistry. 8th edn., 2 vols, London, 1818, i, p. 48.Google Scholar
119. Henry, : The Elements of Experimental Chemistry. 11th edn., 2 vols, London, 1829, i, p. 52.Google Scholar
120. Henry, ibid., p. 65–67.
121. Henry, ibid., p. 67.
122. Ewart, P.: ‘Observations on Mr Dalton's Theory of Chemical Composition’. Ann. Phil. (1815), 6, p. 371–378.Google Scholar
123. Ewart, ibid., p. 378.
124. Murray, I.: Elements of Chemistry. 4th edn., 2 vols, Edinburgh. 1817. i. p. 39.Google Scholar
125. Murray, ibid., p. 54–58.
126. Murray, ibid., p. 61–62.
127. Murray, ibid., p. 64.
128. Murray, : ‘Observations on the Relation of the Law of Definite Proportions in Chemical Combination, to the Constitution of the Acids. Alkalis, and the Earths’. Phil. Mag. (1819), 54, p. 90–100, 182–194.CrossRefGoogle Scholar
129. Holmes, , op. cit. (1), p. 121.Google Scholar
130. Berzelius, J. J.: ‘Sur les proportions déterminées dans lequelles se trouvent réunis les élémens de la nature inorganique’. Ann, de chim. (1811), 78, p. 5–37. 105–132, 217–242Google Scholar; 79, p. 113–142; 80, p. 5–37, 225–258; (1812), 81, p. 5–56; 82, p. 5–33. 113–125, 225–272; 83, p. 5–35. 117–131; Phil. Mag. (1813), 41, p. 3–8, 81–90, 197–205. 275–284, 334–346, 401–415Google Scholar; 42, p. 40–44, 135–142, 171–182, 265–276, 371–386, 440–463; (1814), 43, p. 42–54. 88–101, 161–175, 245–249.
131. Berzelius, ibid., Ann. de chim. (1812), 83, p. 117Google Scholar; Phil, Mag. (1814). 43, p. 245.Google Scholar
132. Berzelius. ibid., Ann. de chim. (1812), 83, p. 119–120Google Scholar; Phil. Mag. (1814), 43, p. 246.Google Scholar
133. Berzelius. ibid., Ann. de chim. (1812), 83, p. 122Google Scholar; Phil. Mag. (1814), 43, p. 247.Google Scholar
134. Berzelius. ibid., Ann. de chim. (1812), 83, p. 125Google Scholar; Phil. Mag. (1814), 43, p. 248.Google Scholar
135. Berzelius, ibid., Ann. de chim. (1812), 83, p. 8Google Scholar; Phil. Mag. (1814), 43, p. 4.Google Scholar
136. Berzelius, : ‘Essay on the Cause of Chemical Proportions, and on Some Circumstances relating to them: together with a Short and Easy Method of Expressing Them’. Ann. Phil. (1813), 2, p. 443–454.Google Scholar
137. Holmes, , op. cit. (1), p. 122.Google Scholar
138. Berzelius, ibid., p. 443.
139. Berzelius, ibid., p. 443.
140. Berzelius, ibid., p. 444.
141. Dalton, : ‘Remarks on the Essay of Dr. Berzelius on the Cause of Chemical Proportions’ Ann Phil. (1814), 3, p. 174.Google Scholar
142. Berzelius, : Essai sur la Théorie des Proportions Chimiques et sur l'Influence Chimique de l'Électricité Paris. 1819Google Scholar; reprinted. New York and London, 1972. p. 10–11.
143. Berzelius. ibid., p. 10.
144. Holmes, , op. cit. (1) p. 116.Google Scholar
145. Pfaff, C. H.: ‘Expériences et observations relatives au nouveau principe d'action de l'affinité établi par M. Berthollet’. Ann. de chim.. (1811), 77, p. 259–287.Google Scholar
146. Berthollet, : ‘Notes’. Ann. de chim. (1811), 77, p. 288–296.Google Scholar