Article contents
Particles and Eighteenth Century Concepts of Chemical Combination
Published online by Cambridge University Press: 05 January 2009
Extract
In trying to understand why a chemist thought as he did, and drew one set of conclusions rather than another, probably the most important thing we need to know is what picture he had in mind of the way in which chemical reactions take place. There are, of course, many other things we need to know. For example, we need to know his social, economic and cultural circumstances, how he was educated and his ideas of the social function of science and in particular of chemistry; we need to know what scientific societies and institutions he belonged to and how they influenced him; and we need to know what he hoped to get out of his work in chemistry—fame or a living or personal satisfaction or a combination of two or three of those results. Indeed, it has become fashionable in recent years to consider those aspects rather than the nature of his actual chemical thought. Yet in the end, his mental picture of chemical change is surely the most important factor in determining what the chemist's results will be, and is therefore the most important factor for historians to understand.
- Type
- Research Article
- Information
- The British Journal for the History of Science , Volume 21 , Issue 4 , December 1988 , pp. 447 - 453
- Copyright
- Copyright © British Society for the History of Science 1988
References
1 E.g., Anon. (Macquer, P.-J.), Dictionnaire de Chymie, 2 vols, Paris, 1766, vol. 1, p. 399.Google Scholar
2 de Lavoisier, A.-L., Traité Elémentaire de Chimie, Paris, 1789Google Scholar, in: Oeuvres, Tome I, Paris, 1864, p. 135Google Scholar; see also Duncan, A.M., ‘The Functions of Affinity Tables and Lavoisier's List of Elements’, Ambix, (1970) 17, pp. 28–42CrossRefGoogle Scholar; Perrin, C.E., ‘Lavoisier's Table of the Elements: A Reappraisal’, Ambix, (1973) 20, pp. 95–105CrossRefGoogle Scholar; Siegfried, R., ‘Lavoisier's Table of Simple Substances: its Origin and Interpretation’, Ambix, (1982) 29, pp. 29–48CrossRefGoogle Scholar; Liana, J.W., ‘A Contribution of Natural History to the Chemical Revolution in France’, Ambix, (1985) 32, pp. 71–91.CrossRefGoogle Scholar
3 For an extensive account of such theories see, for example, Metzger, Hélène, Les doctrines cbimiques en France du début du XVIIe à la fin du XVIIIe Siècle, Paris, 1923 (reprinted 1969)Google Scholar, and Newton, Stahl, Boerhaave et la Doctrine Chimique, Paris, 1930.Google Scholar
4 E.g., Descartes, R., Principia Philosophiae, Amsterdam, 1664, Part iv, esp. articles 58–132Google Scholar; Boyle, R., The Origins of Forms and Qualities (According to the Corpuscular Philosophy), Oxford, 1666Google Scholar, and Experiments, Notes, &c. about the Mechanical Origins or Production of Divers Particular Qualities, London, 1675, Tracts 4, 5, 6, 7, 8 and 9Google Scholar; Newton, I., Opticks, 4th edn, (London, 1730 (1704)) Dover Reprint, New York, 1952, Query 31, pp. 375–406.Google Scholar
5 E.g. Keill, John, Introductio ad Veram Physicam: seu Lectiones Physicae Habitae in Schola Naturalis Philosophiae Academiae Oxoniensis, A.D. 1700, 6th edn, Cambridge, 1741 (1702), pp. 101–2Google Scholar; Freind, John, Chymical lectures in which almost all the Operations of Chymistry are reduced to their True Principles and the Laws of Nature. Readin the Museum at Oxford, 1704, 2nd edn, London, 1729 (1712), pp. 95–104, 146–7Google Scholar; Knight, G., An Attempt to demonstrate that all the Phaenomena in Nature may be explained by Two simple active Principles, Attraction and Repulsion, 2nd edn, London, 1754 (1748), pp. 28 ff.Google Scholar; Boscovich, R.J., Theoria Philosophiae Naturalis Redacta ad Unicam Legem Virium in Natura Existentium, amended edition, Venice, 1763 (1758), pp. 96–125.Google Scholar
6 Leclerc, Jean-Louis, de Buffon, Comte, Histoire Naturelle, Tome xiii, ‘Seconde Vue de la Nature’, Paris, 1765, pp. xii–xvi.Google Scholar
7 E.g., Clausier, in his translation of Quincy, J., Pharmacopée Universelle Raisonnée, Paris, 1749, p. 8, pp. 55 ffGoogle Scholar; de Limbourg, J.P., Dissertation sur les Affinités Chymiques, Liége, 1761, p. 45Google Scholar; Demachy, J.F., Recueil de Dissertations, Amsterdam, 1774, pp. 150–2, 211–226, 235Google Scholar; Higgins, Bryan, A Philosophical Essay Concerning Light, London, 1776, pp. xix–xxiGoogle Scholar. Priestley adopted Boscovich's theory, but for the purposes of his theology and philosophy: he does not seem to have applied it to his work in chemistry. See Schofield, R.E., ‘Boscovich and Priestley's Theory of Matter’, in: Roger Joseph Boscovich, (ed. Whyte, L.L.), London, 1961Google Scholar. Cavendish, in an unpublished paper, used a modification of Boscovich's theory to explain observations on the vapour pressure of water, but again does not seem to have related it to his work in chemistry (Cavendish, H., The Scientific Papers, 2 vols, Cambridge, 1921, vol. II, pp. 354–80Google Scholar, quoted by Partington, J.R., A History of Chemistry, vol. iii, London, 1962, p. 308CrossRefGoogle Scholar). Berry, A.J., Henry Cavendish, London, 1960, p. 92Google Scholar, suggests that Cavendish may have met Boscovich when the latter visited London in 1760.
8 E.g., Rouelle, G.F., ‘Mémoire sur les sels neutres’, Mém. Ac. R. des Sciences, (1744), p. 354Google Scholar, argues against the suggestions that ‘les molécules salines’ are lighter than ‘les parties de l'eau’, or that an explanation could be derived from the notion of pores in the particles; but he clearly assumes that the particles exist. Macquer, P.-J., op. cit. (1), vol. i, p. 49Google Scholar (‘Si, par exemple, les molécules primitives integrantes de l'acide vitriolique s'unis sent avec celles du fer’), pp. 55–7 (‘On doit done entendre par parties intégrantes d'un corps les plus petites molécules, dans lesquelles ce corps puisse être réduit sans être décomposé’, etc.), p. 326 (‘ces corps simples peuvent partager des molécules qui seroient encore inaccessibles à nos sens, quand même elles seroient infiniment plus grosses qu'elles ne le sont, lorsqu'elles eprouvent cette division invisible.’); vol. ii, p. 424 (‘Secondement, que cette force dont nous n'appercevons les effets dans la Chymie que dans les tres petites molécules, ou parties intégrantes & constituantes des corps, paroît proportionnée à la densité ou pesanteur spécifique de ces mêmes parties. Troisiemement, que cette même force est limitée dans chaque molécule intégrante de la matière; que si on la considere comme non satisfaite, & par conséquent comme un simple tendance à la combinaison, elle est la plus grande qu'il soit possible dans un molécule intéegrante parfaitement isolée & ne tenant à rien, & qu'elle devient la plus petite possible ou nulle lorsqu'elle est satisfaite par la combinaison intime avec d'autres parties capables d'épuiser toute son action; alors de tendance qu'elle étoit, elle est changée en adhérence…); Pott, J.H., Exercitationes Chymicae, Berlin, 1738Google Scholar, tr. Demachy, J.F. as Dissertations Chymiques, 4 vols, Paris, 1759, vol. iv, p. 434Google Scholar (‘ce qui pourroit faire croire que la couleur rouge de ces lessives vient des molécules charbonneuses, qui malgré le soin de l'Artiste s'insinuent toujours dans les vaisseaux les mieux fermés.’); Bergman, T., ‘De attractionibus electivis disquisitio’, Nova Acta Reg. Soc. Sci. Upsaliensis, (1775), 2, pp. 159, 248Google Scholar, tr. as A Dissertation on Elective Attractions, London, 1785, pp. 2–3Google Scholar; Berthollet, C.L., Essai de Statique Chimique, 2 vols, Paris, 1803, vol. i, p. 24.Google Scholar
9 The passage in the Discours Préliminaire is on de Lavoisier, A.L., op. cit. (2), p. 7Google Scholar (‘si par le nom d'éléments nous entendons désigner les molécules simples et indivisibles qui composent les corps, il est probable que nous ne les connaissons pas’). The following, however, are examples later in the book: op. cit. (2), pp. 17–18, 20, 21, 26–7, 28Google Scholar (fairly extensive discussion of ‘les molécules du calorique’); pp. 30–31 (discussion of ‘molécules’ of air, of elastic fluids, separated by the attraction for each other of the ‘molécules du calorique’ rather than by repulsion, and of the analogous passage of ‘molécules’ of water between those of a sponge); p. 65 (the use of heat ‘pour écarter les molécules du métal’ so that oxygen can combine with it); p. 86 (‘les parties liquides’); p. 96 (‘les différentes forces d'attraction que les molécules de ces principes exercent les unes sur les autres’); p. 97 (of hydrogen, oxygen and carbon, ‘les molécules de ces trois substances ferment une combinaison triple’); p. 118 (‘chaque molécule de potasse se trouve, au moment de sa formation, en contact avec une molécule d'acide carbonique’); p. 141 (of the effect of calorique on other substances, ‘qu'ilremplit tousles intervalles que laissent entre elles leur molécules: que dans certains cas le calorique se fixe dans les corps, de manière même à constituer leurs parties solides; mais que le plus souvent il en ecarte les molécules, il excerce sur elles une force répulsive’); p. 143 (attraction of ‘molécules’ of other substances for oxygen). Naturally few instances occur in the practical part of the book, but there are one or two, such as p. 313 (‘les parties integrantes d'un corps’); p. 314 (‘supprimer une partie du calorique logé entre ses molécules, autrement dit le refroidir … les molécules prennent un arrangement régulier’); p. 316 (although salts may crystallise in different forms, ‘rien n'est plus constant au contraire que la figure des molécules primitives des corps’); p. 371 (‘Lorsqu'on écarte les unes des autres, par le moyen de l'eau, les molécules d'un sel, cette opération … se nomme solution. Ni le dissolvant, ni le corps tenu en dissolution ne sont décomposés dans cette opération; aussi, dés l'instant que la cause qui tenait les molécules écartés cesse, elles se réunissent, et la substance saline reparaît telle qu'elle etait avant la solution.) It can hardly be doubted from the contexts that Lavoisier uses the term ‘molécule’ to mean an invisibly small particle of matter, and clearly his contemporary translator, Kerr, Robert, Elements of Chemistry, Edinburgh, 1790Google Scholar, does not doubt it. As we have seen above, Lavoisier's teacher Rouelle and Macquer in his dictionary use the word in that sense.
10 For example, Homberg, G., ‘Observations sur la quantité exacte des sels volatiles acides contenus dans tous les différens esprits acides’ and ‘Observations sur la quantité d'acides absorbés par les alcalis terreux’, Mém. Ac. R. des Sci., (1699), pp. 44–51, and (1700), pp. 64–71Google Scholar; Bergman, T., Dissertatio Chetnicade Diversa Phlogisti Quantitate in Metallis, Upsala, 1782Google Scholar; Wenzel, C.F., Lehre von der Verwandtschaft der Körper, Dresden, 1800 (1777), pp. 28–30, 85–97Google Scholar; Black, J., Dissertatio Medico Inauguralis, de Humore acido a cibis orto, Edinburgh, 1754Google Scholar; Cavendish, H., ‘Three Papers, containing Experiments on factitious Airs’, Phil. Trans., (1766) 56, 2nd paper, pp. 144–159, and 3rd paper, pp. 168–184CrossRefGoogle Scholar. Those who believed that phlogiston had negative weight are no exception, as they apparently believed that its negative weight was constant.
11 Newton, , loc. cit. (3).Google Scholar
12 See, for instance, Partington, J.R., op. cit. (6), vol. iii, pp. 755–822Google Scholar; Greenaway, F., John Dalton and the atom, London, 1966, pp. 105–147Google Scholar; Thackray, A.W., John Dalton: critical assessments of his life and science, Cambridge, Mass., 1966, pp. 61–83.Google Scholar
13 Bergman, T., A Dissertation on Elective Attractions, London, 1785.Google Scholar
- 2
- Cited by