Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T04:18:58.217Z Has data issue: false hasContentIssue false

A Review of Panjer's Recursion Formula and its Applications

Published online by Cambridge University Press:  10 June 2011

D.C.M. Dickson
Affiliation:
Centre for Actuarial Studies, The University of Melbourne, Victoria, 3010, Australia. Tel: + 61 3 8344 4727; Fax: + 61 3 8344 6899; E-mail: [email protected]

Abstract

This paper reviews Panjer's recursion formula for evaluation of compound distributions and illustrates how it can be applied to life and general insurance problems.

Type
Sessional meetings: papers and abstracts of discussions
Copyright
Copyright © Institute and Faculty of Actuaries 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bowers, N.L., Gerber, H.U., Hickman, C.J., Jones, D.A. & Nesbitt, C.J. (1986). Actuarial mathematics. Society of Actuaries, Itasca, IL.Google Scholar
Bühlmann, H. (1984). Numerical evaluation of the compound Poisson distribution: recursion or Fast Fourier Transform? Scandinavian Actuarial Journal, 116126.CrossRefGoogle Scholar
De Pril, N. (1985). Recursions for convolutions of arithmetic distributions. ASTIN Bulletin, 15, 135139.CrossRefGoogle Scholar
De Pril, N. (1986). On the exact computation of the aggregate claims distribution in the individual life model. ASTIN Bulletin, 16, 109112.CrossRefGoogle Scholar
De Pril, N. (1988). Improved approximations for the aggregate claims distribution of a life insurance portfolio. Scandinavian Actuarial Journal, 6168.CrossRefGoogle Scholar
De Pril, N. & Dhaene, J. (1992). Error bounds for compound Poisson approximations of the individual risk model. ASTIN Bulletin, 22, 135148.CrossRefGoogle Scholar
Gerber, H.U. (1982). On the numerical evaluation of the distribution of aggregate claims and its stop-loss premiums. Insurance: Mathematics and Economics, 1, 1318.Google Scholar
Hogg, R.V. & Kxugman, S.A. (1984). Loss distributions. Wiley, New York.CrossRefGoogle Scholar
Kuon, S., Reich, A. & Reimers, L. (1987). Panjer vs Kornya vs De Pril: a comparison from a practical point of view. ASTIN Bulletin, 17, 183191.CrossRefGoogle Scholar
Kuon, S., Radtke, M. & Reich, A. (1993). An appropriate way to switch from the individual risk model to the collective one. ASTIN Bulletin, 23, 2354.CrossRefGoogle Scholar
Panjer, H.H. (1981). Recursive evaluation of a family of compound distributions. ASTIN Bulletin, 12, 2126.CrossRefGoogle Scholar
Panjer, H.H. & Lutek, B.W. (1983). Practical aspects of stop-loss calculations. Insurance: Mathematics and Economics, 2, 159177.Google Scholar
Panjer, H.H. & Wang, S. (1993). On the stability of recursive formulas. ASTIN Bulletin, 23, 227258.CrossRefGoogle Scholar
Panjer, H.H. & Willmot, G.E. (1986). Computational aspects of recursive evaluation of compound distributions. Insurance: Mathematics and Economics, 5, 113116.Google Scholar
Panjer, H.H. & Willmot, G.E. (1992). Insurance risk models. Society of Actuaries, Schaumberg, IL.Google Scholar
Schroter, K.J. (1991). On a family of counting distributions and recursions for related compound distributions. Scandinavian Actuarial Journal, 161175.Google Scholar
Shiu, E.S.W. (1988). Calculation of the probability of eventual ruin by Beekman's convolution series. Insurance: Mathematics and Economics, 7, 4147.Google Scholar
Sundt, B. (1992). On some extensions of Panjer's class of counting distributions. AST IN Bulletin, 22, 6180.CrossRefGoogle Scholar
Sundt, B. & Jewell, W.S. (1981). Further results on recursive evaluation of compound distributions. ASTIN Bulletin, 12, 2739.CrossRefGoogle Scholar
Willmot, G.E. (1988). Sundt and Jewell's family of discrete distributions. ASTIN Bulletin, 18, 1729.CrossRefGoogle Scholar