Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T18:27:23.621Z Has data issue: false hasContentIssue false

Correspondence between Subjective and Objective Cognitive Functioning Following Chemotherapy for Breast Cancer

Published online by Cambridge University Press:  21 July 2016

Mary E. Mihuta
Affiliation:
Menzies Health Institute Queensland and School of Applied Psychology, Griffith University, Gold Coast, Australia
Heather J. Green*
Affiliation:
Menzies Health Institute Queensland and School of Applied Psychology, Griffith University, Gold Coast, Australia
David W. K. Man
Affiliation:
Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China
David H. K. Shum
Affiliation:
Menzies Health Institute Queensland and School of Applied Psychology, Griffith University, Gold Coast, Australia
*
Address for correspondence: Dr Heather Green, School of Applied Psychology, Gold Coast Campus, Griffith University, QLD, 4222, Australia. E-mail: [email protected]
Get access

Abstract

This study examined subjective and objective cognitive functioning in 26 female breast cancer survivors (BCS) who received chemotherapy treatment that finished .5 to 5 years prior to testing and compared their results to 25 demographically matched women with no history of cancer. Participants were assessed on prospective memory (PM) tasks; neuropsychological tests of processing speed, attentional flexibility with greater cognitive load, executive function, and verbal memory; self-report measures of cognitive dysfunction and PM failures; and distress. The BCS group showed significantly slower speed of processing and reduced attentional flexibility, and reported significantly more cognitive complaints and PM failures than the control group on five of six self-report measures. The groups did not differ on other PM or neuropsychological measures or on a measure of distress. Subjective cognition correlated with some neuropsychological tests and with a virtual reality PM task. Objective cognitive impairments were associated with reduced quality of life in the BCS group. The results provide some evidence of both self-reported impairment and objective cognitive dysfunction following chemotherapy treatment.

Type
Articles
Copyright
Copyright © Australasian Society for the Study of Brain Impairment 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahles, T.A., Saykin, A.J., Furstenberg, C.T., Cole, B., Mott, L.A., Skalla, K., . . . Silberfarb, P.M. (2002). Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. Journal of Clinical Oncology, 20 (2), 485493. doi:10.1200/jco.20.2.485.CrossRefGoogle Scholar
Ahles, T.A., Saykin, A.J., McDonald, B.C., Li, Y., Furstenberg, C.T., Hanscom, B.S., . . . Kaufman, P.A. (2010). Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: Impact of age and cognitive reserve. Journal of Clinical Oncology, 28 (29), 44344440. doi:10.1200/jco.2009.27.0827.Google Scholar
Azzopardi, B., Juhel, J., & Auffray, C. (2015). Aging and performance on laboratory and naturalistic prospective memory tasks: The mediating role of executive flexibility and retrospective memory. Intelligence, 52, 2435. doi:10.1016/j.intell.2015.06.007.CrossRefGoogle Scholar
Benton, A.D., & Hamsher, K. (1978). Multilingual aphasia examination: Manual of instructions. Iowa City, IA: AJA Associates.Google Scholar
Brandt, J. (1991). The Hopkins verbal learning test: Development of a new memory test with six equivalent forms. Clinical Neuropsychologist, 5 (2), 125142. doi:10.1080/13854049108403297.CrossRefGoogle Scholar
Brooks, B.M., Rose, F.D., Potter, J., Jayawardena, S., & Morling, A. (2004). Assessing stroke patients' prospective memory using virtual reality. Brain Injury, 18 (4), 391401. doi:10.1080/02699050310001619855.CrossRefGoogle Scholar
Canty, A.L., Fleming, J., Patterson, F., Green, H.J., Man, D., & Shum, D.H.K. (2014). Evaluation of a virtual reality prospective memory task for use with individuals with severe traumatic brain injury. Neuropsychological Rehabilitation, 24 (2), 238265. doi:10.1080/09602011.2014.881746.Google Scholar
Cheng, H., Yang, Z., Dong, B., Chen, C., Zhang, M., Huang, Z., . . . Wang, K. (2013). Chemotherapy-induced prospective memory impairment in patients with breast cancer. Psycho-Oncology, 22 (10). doi:10.1002/pon.3291.Google Scholar
Collins, B., MacKenzie, J., Tasca, G.A., Scherling, C., & Smith, A. (2013). Cognitive effects of chemotherapy in breast cancer patients: A dose-response study. Psycho-Oncology, 22 (7), 15171527. doi:10.1002/pon.3163.CrossRefGoogle Scholar
Collins, B., Paquet, L., Dominelli, R., White, A., & MacKenzie, J. (2015). Metamemory function in chemotherapy-treated patients with breast cancer: An explanation for the dissociation between subjective and objective memory measures? Psycho-Oncology. doi:10.1002/pon.4012.Google Scholar
Fish, J., Evans, J.J., Nimmo, M., Martin, E., Kersel, D., Bateman, A., . . . Manly, T. (2007). Rehabilitation of executive dysfunction following brain injury: “Content-free” cueing improves everyday prospective memory performance. Neuropsychologia, 45 (6), 13181330. doi:10.1016/j.neuropsychologia.2006.09.015.CrossRefGoogle Scholar
Fish, J., Wilson, B.A., & Manly, T. (2010). The assessment and rehabilitation of prospective memory problems in people with neurological disorders: A review. Neuropsychological Rehabilitation, 20 (2), 161179. doi:10.1080/09602010903126029.Google Scholar
Green, H.J., Pakenham, K.I., & Gardiner, R.A. (2005). Cognitive deficits associated with cancer: A model of subjective and objective outcomes. Psychology, Health and Medicine, 10 (2), 145160. doi:10.1080/13548500500093308.CrossRefGoogle Scholar
Groot, Y.C.T., Wilson, B.A., Evans, J., & Watson, P. (2002). Prospective memory functioning in people with and without brain injury. Journal of the International Neuropsychological Society, 8 (5), 645. doi:10.1017.S1355617702801321.CrossRefGoogle Scholar
Hutchinson, A.D., Hosking, J.R., Kichenadasse, G., Mattiske, J.K., & Wilson, C. (2012). Objective and subjective cognitive impairment following chemotherapy for cancer: A systematic review. Cancer Treatment Reviews, 38 (7), 926934. doi:10.1016/j.ctrv.2012.05.002.Google Scholar
Ihle, A., Hering, A., Mahy, C.E., Bisiacchi, P.S., & Kliegel, M. (2013). Adult age differences, response management, and cue focality in event-based prospective memory: A meta-analysis on the role of task order specificity. Psychology and Aging, 28 (3), 714720. doi:10.1037/a0033653.Google Scholar
Janelsins, M.C., Kesler, S.R., Ahles, T.A., & Morrow, G.R. (2014). Prevalence, mechanisms, and management of cancer-related cognitive impairment. International Review of Psychiatry, 26 (1), 102113. doi:10.3109/09540261.2013.864260.CrossRefGoogle Scholar
Kessler, R.C., Andrews, G., Colpe, L.J., Hiripi, E., Mroczek, D.K., Normand, S.-L. T., . . . Zaslavsky, A.M. (2002). Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychological Medicine, 32 (6), 959976. doi:10.1017/S0033291702006074.Google Scholar
King, S., & Green, H.J. (2015). Psychological intervention for improving cognitive function in cancer survivors: A literature review and randomized controlled trial. Frontiers in Oncology, 5. doi:10.3389/fonc.2015.00072.Google Scholar
Kliegel, M., Mackinlay, R., & Jager, T. (2008). Complex prospective memory: Development across the lifespan and the role of task interruption. Developmental Psychology, 44 (2), 612617. doi:10.1037/0012-1649.44.2.612.Google Scholar
Knight, R.G., & Titov, N. (2009). Use of virtual reality tasks to assess prospective memory: Applicability and evidence. Brain Impairment, 10 (1), 313. doi:10.1375/brim.10.1.3.Google Scholar
Kvavilashvili, L., & Ellis, J. (1996). Varieties of intention: Some distinctions and classifications. In Brandimonte, M., Einstein, G.O. & McDaniel, M.A. (Eds.), Prospective memory: Theory and applications (pp. 2352). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Lai, J.S., Butt, Z., Wagner, L., Sweet, J.J., Beaumont, J.L., Vardy, J., . . . Cella, D. (2009). Evaluating the dimensionality of perceived cognitive function. Journal of Pain and Symptom Management, 37 (6), 982995. doi:10.1016/j.jpainsymman.2008. 07.012.CrossRefGoogle Scholar
Man, D.W.K., Fleming, J., Hohaus, L., & Shum, D. (2011). Development of the brief assessment of prospective memory (BAPM) for use with traumatic brain injury populations. Neuropsychological Rehabilitation, 21 (6), 884898. doi:10.1080/09602011.2011.627270.Google Scholar
Mar Fan, H.G., Houédé-Tchen, N., Yi, Q.-L., Chemerynsky, I., Downie, F.P., Sabate, K., & Tannock, I.F. (2005). Fatigue, menopausal symptoms, and cognitive function in women after adjuvant chemotherapy for breast cancer: 1- and 2-year follow-up of a prospective controlled study. Journal of Clinical Oncology, 23 (31), 80258032. doi:10.1200/jco.2005.01.6550.Google Scholar
Marsh, R.L., Hancock, T., & Hicks, J. (2002). The demands of an ongoing activity influence the success of event-based prospective memory. Psychonomic Bulletin and Review, 9 (3), 604610. doi:10.3758/bf03196319.Google Scholar
Marsh, R.L., & Hicks, J.L. (1998). Event-based prospective memory and executive control of working memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 24 (2), 336349. doi:10.1037/0278-7393.24.2.336.Google Scholar
McDonald-Miszczak, L., Neupert, S.D., & Gutman, G. (2009). Does cognitive ability explain inaccuracy in older adults' self-reported medication adherence? Journal of Applied Gerontology, 28 (5), 560581. doi:10.1177/0733464808330821.Google Scholar
Meyers, C.A. (2013). Cognitive complaints after breast cancer treatments: Patient report and objective evidence. Journal of the National Cancer Institute, 105 (11), 761762. doi:10.1093/jnci/djt091.Google Scholar
Morris, S.B. (2008). Estimating effect sizes from pretest-posttest-control group designs. Organizational Research Methods, 11 (2), 364386. doi:10.1177/1094428106291059.CrossRefGoogle Scholar
Munir, F., Burrows, J., Yarker, J., Kalawsky, K., & Bains, M. (2010). Women's perceptions of chemotherapy-induced cognitive side affects on work ability: A focus group study. Journal of Clinical Nursing, 19 (9–10), 13621370. doi:10.1111/j.1365-2702.2009.03006.x.CrossRefGoogle Scholar
Myers, J.S., Wick, J.A., & Klemp, J. (2015). Potential factors associated with perceived cognitive impairment in breast cancer survivors. Supportive Care in Cancer, 23 (11), 32193228. doi:10.1007/s00520-015- 2708-7.Google Scholar
Ono, M., Ogilvie, J.M., Wilson, J.S., Green, H., Chambers, S.K., Ownsworth, T., & Shum, D.H. K. (2015). A meta-analysis of cognitive impairment and decline associated with adjuvant chemotherapy in women with breast cancer. Frontiers in Oncology, 5. doi:10.3389/fonc.2015.00059.Google Scholar
Paquet, L., Collins, B., Song, X., Chinneck, A., Bedard, M., & Verma, S. (2013). A pilot study of prospective memory functioning in early breast cancer survivors. The Breast, 22 (4), 455461. doi:10.1016/j.breast.2013.04.002.Google Scholar
Phillips, K.M., Jim, H.S., Small, B.J., Laronga, C., Andrykowski, M.A., & Jacobsen, P.B. (2012). Cognitive functioning after cancer treatment. Cancer, 118 (7), 19251932. doi:10.1002/cncr.26432.Google Scholar
Potvin, M.-J., Rouleau, I., Audy, J., Charbonneau, S., & Giguère, J.-F. (2011). Ecological prospective memory assessment in patients with traumatic brain injury. Brain Injury, 25 (2), 192205. doi:10.3109/02699052.2010.541896.CrossRefGoogle Scholar
Reid-Arndt, S., & Cox, C. (2012). Stress, coping and cognitive deficits in women after surgery for breast cancer. Journal of Clinical Psychology in Medical Settings, 19 (2), 127137. doi:10.1007/s10880-011- 9274-z.Google Scholar
Reitan, R.M., & Wolfson, D. (1985). The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation. Tucson, AZ: Neuropsychological Press.Google Scholar
Schultheis, M.T.P., Himelstein, J.M.A., & Rizzo, A.A.P. (2002). Virtual reality and neuropsychology: Upgrading the current tools. Journal of Head Trauma Rehabilitation, 17 (5), 378394.Google Scholar
Shilling, V., & Jenkins, V. (2007). Self-reported cognitive problems in women receiving adjuvant therapy for breast cancer. European Journal of Oncology Nursing, 11 (1), 615. doi:10.1016/j.ejon.2006.02.005.CrossRefGoogle Scholar
Shum, D., & Man, D.W.K. (2011). Virtual reality shopping task. Brisbane, Australia; Hong Kong, China: Unpublished software.Google Scholar
Shum, D., Valentine, M., & Cutmore, T. (1999). Performance of individuals with severe long-term traumatic brain injury on time-, event-, and activity-based prospective memory tasks. Journal of Clinical and Experimental Neuropsychology, 21 (1), 4958. doi:10.1076/jcen.21.1.49. 943.CrossRefGoogle Scholar
Tchen, N., Juffs, H.G., Downie, F.P., Yi, Q.L., Hu, H., Chemerynsky, I., . . . Tannock, I.F. (2003). Cognitive function, fatigue, and menopausal symptoms in women receiving adjuvant chemotherapy for breast cancer. Journal of Clinical Oncology, 21 (22), 41754183.Google Scholar
Uttl, B. (2008). Transparent meta-analysis of prospective memory and aging. PLoS ONE, 3 (2), e1568. doi:10.1371/journal.pone.0001568.CrossRefGoogle Scholar
Uttl, B., & Kibreab, M. (2011). Self-report measures of prospective memory are reliable but not valid. Canadian Journal of Experimental Psychology, 65 (1), 5768. doi:10.1037/a0022843.Google Scholar
Vedhara, K., Wadsworth, E., Norman, P., Searle, A., Mitchell, J., Macrae, N., . . . Memel, D. (2004). Habitual prospective memory in elderly patients with Type 2 diabetes: Implications for medication adherence. Psychology, Health and Medicine, 9 (1), 1727. doi:10.1080/13548500310001637724.Google Scholar
Wagner, L., Sweet, J., Butt, Z., Lai, J., & Cella, D. (2009). Measuring patient self-reported cognitive function: Development of the functional assessment of cancer therapy - cognitive function instrument. Journal of Supportive Oncology, 7 (6), W32W39.Google Scholar
Wefel, J.S., Vardy, J., Ahles, T., & Schagen, S.B. (2011). International cognition and cancer task force recommendations to harmonise studies of cognitive function in patients with cancer. The Lancet Oncology, 12 (7), 703708.Google Scholar
World Medical Association (2008). WMA declaration of Helsinki - ethical principles for medical research involving human subjects. Retrieved 21 August, 2012, from http://www.wma.net/en/30publications/10policies/b3/index.html.Google Scholar
Zeintl, M., Kliegel, M., Rast, P., & Zimprich, D. (2006). Prospective memory complaints can be predicted by prospective memory performance in older adults. Dementia and Geriatric Cognitive Disorders, 22 (3), 209215.Google Scholar