Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T07:11:32.523Z Has data issue: false hasContentIssue false

The Brief Odor Detection Test (B-ODT) for Very Early Diagnosis of Cognitive Decline: A Preliminary Study

Published online by Cambridge University Press:  08 May 2017

Dimitra Savvoulidou
Affiliation:
Aristotle University of Thessaloniki, Hellas, Greece
Efthymia Totikidou
Affiliation:
Aristotle University of Thessaloniki, Hellas, Greece
Chariklia Varvesiotou
Affiliation:
Aristotle University of Thessaloniki, Hellas, Greece
Magda Iakovidou
Affiliation:
Aristotle University of Thessaloniki, Hellas, Greece
Ourania Sfakianaki
Affiliation:
Aristotle University of Thessaloniki, Hellas, Greece
Georgia Papantoniou
Affiliation:
University of Ioannina, Hellas, Greece
Elvira Masoura
Affiliation:
Aristotle University of Thessaloniki, Hellas, Greece
Despina Moraitou*
Affiliation:
Aristotle University of Thessaloniki, Hellas, Greece
*
Address for correspondence: Despina Moraitou, PhD, Section of Cognitive and Experimental Psychology, School of Psychology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Hellas, Greece. E-mail: [email protected]
Get access

Abstract

Olfactory impairment in older adults is associated with cognitive decline. This study describes the development of a Brief Odor Detection Test (B-ODT), and its pilot administration in community-dwelling older adults. The study aimed at examining whether the test could differentiate older adults with very mild cognitive impairment from their cognitively healthy counterparts. The sample consisted of 34 older adults (22 women), aged from 65 to 87 years. Participants were divided into two groups according to their general cognitive functioning. Odor detection was measured via vanillin solutions at the following concentrations: 150 mg/L, 30 mg/L, 15 mg/L, 3 mg/L, and .03 mg/L. The first condition of the test involved a scale administration of vanillin solutions. The second condition examined the change in air odour and it required vanillin solution of 30 mg/L and a metric ruler of 30 cm. The examiner had to place the solution at a specific distance point from each nostril. Odour identification sensitivity was secondarily measured. The results showed statistically significant differences in odour detection threshold between the two groups. In the unirhinal testing, left nostril differences of the two groups were definite. Hence, the B-ODT seems a promising instrument for very early cognitive impairment screening in older adult population.

Type
Articles
Copyright
Copyright © Australasian Society for the Study of Brain Impairment 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, M. W., Tabert, M. H., & Devanand, D. P. (2006). Olfactory dysfunction: As a predictor of neurodegenerative disease. Current Neurology and Neuroscience Reports, 6, 379386.Google Scholar
Alves, J., Petrosyan, A., & Magalhães, R. (2014). Olfactory dysfunction in dementia. World Journal of Clinical Cases, 2 (11), 661667.Google Scholar
Attems, J., Walker, L., & Jellinger, K. A. (2015). Olfaction and aging: A mini-review. Gerontology, 61 (6), 485490.Google Scholar
Baba, T., Takeda, A., Kikuchi, A., Nishio, Y., Hosokai, Y. . . . Itoyama, Y. (2011). Association of olfactory dysfunction and brain: Metabolism in Parkinson's disease. Movement Disorders, 26, 621628.Google Scholar
Bahar-Fuchs, A., Moss, S., Rowe, C., & Savage, G. (2010). Olfactory performance in AD, aMCI, and healthy ageing: A unirhinal approach. Chemical Senses, 35, 855862.Google Scholar
Bottino, C. M., Castro, C. C., Gomes, R. L., Buchpiguel, C. A., Marchetti, R. L., & Neto, M. R. (2002). Volumetric MRI measurements can differentiate Alzheimer's disease, mild cognitive impairment, and normal aging. International Psychogeriatrics, 14, 5972.Google Scholar
Braak, H. & Braak, E. (1995). Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiology of Aging, 16, 271278.Google Scholar
Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: The Guilford Press.Google Scholar
Conti, M. Z., Vicini-Chilovi, B., Riva, M., Zanetti, M., Liberini, P., Padovani, A., & Rozzini, L. (2013). Odor identification deficit predicts clinical conversion from mild cognitive impairment to dementia due to Alzheimer's disease. Archives of Clinical Neuropsychology, 28, 391399.Google Scholar
Courtiol, E., & Wilson, D. A. (2015). The olfactory thalamus: Unanswered questions about the role of the mediodorsal thalamic nucleus in olfaction. Frontiers in Neural Circuits, 9 (49), 18. doi: 10.3389/fncir.2015.00049 Google Scholar
Devanand, D. P., Michaels-Marston, K. S., Liu, X., Pelton, G. H., Padilla, M., Marder, K. . . . Mayeux, R. (2000). Olfactory deficits in patients with mild cognitive impairment predict Alzheimer's disease at follow-up. The American Journal of Psychiatry, 157, 13991405.Google Scholar
Djordjevic, J., Jones-Gotman, M., Sousa, K., & Chertkow, H. (2008). Olfaction in patients with mild cognitive impairment and Alzheimer's disease. Neurobiology of Aging, 29, 693706.Google Scholar
Doty, R. L. (2012). Olfaction in Parkinson's disease and related disorders. Neurobiological Disorders, 46, 527552. doi: 10.1016/j.nbd.2011.10.026 Google Scholar
Doty, R. L. (2015). Olfactory dysfunction and its measurement in the clinic. World Journal of Otorhinolaryngology Head and Neck Surgery, 1, 2833.Google Scholar
Doty, R. L. et al. (2014). The lateralized smell test for detecting Alzheimer's disease: Failure to replicate. Journal of the Neurological Sciences, 340 (1–2), 170173.Google Scholar
Doty, R. L. & Kamath, V. (2014). The influences of age on olfaction: A review. Frontiers in Psychology, 5, 120.CrossRefGoogle ScholarPubMed
Doty, R. L., Petersen, I., Mensah, N., & Christensen, K. (2011). Genetic and environmental influences on odor identification ability in the very old. Psychology and Aging, 26, 864871.Google Scholar
Doty, R. L., Shaman, P., & Dann, M. (1984). Development of the university of Pennsylvania smell identification test: A standardized microencapsulated test of olfactory function. Physiology of Behavior, 32, 489502.Google Scholar
Dulay, M., Gesteland, R., Shear, P., Ritchey, P., & Frank, R. (2008). Assessment of the influence of cognition and cognitive processing speed on three tests of olfaction. Journal of Clinical and Experimental Neuropsychology, 30, 327337.Google Scholar
Eibenstein, A., Fioretti, A. B., Simaskou, M. N., Sucapane, P., Mearelli, S., Mina, C., . . . Fusetti, M. (2005). Olfactory screening test in mild cognitive impairment. Neurological Sciences, 26, 156160.Google Scholar
Ferreira, L. K., Diniz, B. S., Forlenza, O. V., Busatto, G. F., & Zanetti, M. V. (2011). Neurostructural predictors of Alzheimer's disease: A meta-analysis of VBM studies. Neurobiology of Aging, 32 (10), 17331741.Google Scholar
Fountoulakis, K., Tsolaki, M., Iacovides, A., Yesavage, J., O'Hara, R., Kazis, A., & Ierodiakonou, C. (1999). The validation of the short form of the Geriatric Depression Scale (GDS) in Greece. Aging (Milano), 11 (6), 367372.Google Scholar
Haehner, A., Rodewald, A., Gerber, J. C., & Hummel, T. (2008). Correlation of olfactory function with changes in the volume of the human olfactory bulb. Archives of Otolaryngology: Head and Neck Surgery, 134, 621624.Google Scholar
Hawkes, C. (2006). Olfaction in neurodegenerative disorder. Taste and Smell. An Update, 63, 133151.Google Scholar
Hedner, M., Larsson, M., Arnold, N., Zucco, G., & Hummel, T. (2010). Cognitive factors in odor detection, odor discrimination, and odor identification tasks. Journal of Clinical and Experimental Neuropsychology, 32 (10), 10621067.Google Scholar
Huart, C., Rombaux, P., Gerard, T., Hanseeuw, B., Lhommel, R., Quenon, L., . . . Mouraux, A. (2015). Unirhinal olfactory testing for the diagnostic workup of mild cognitive impairment. Journal of Alzheimers Disease, 47, 253270.Google Scholar
Hulshoff-Pol, H. E., Hijman, R., Baare, W. F. C., van Eekelen, S., & van Ree, J. M. (2000). Odor discrimination and task duration in young and older adults. Chemical Senses, 25, 461464.Google Scholar
Hüttenbrink, K. B., Hummel, T., Berg, D., Gasser, T., & Hähner, A. (2013). Olfactory dysfunction: Common in later life and early warning of neurodegenerative disease. Deutsches Ärzteblatt International, 110, 17.Google Scholar
IBM Corp. (2012). IBM SPSS statistics for windows, version 21.0. NY, USA: IBM Corp. Google Scholar
Katotomichelakis, M., Balatsouras, D., Tripsianis, G., Tsaroucha, A., Homsioglou, E., & Danielides, V. (2007). Normative values of olfactory function testing using the ‘sniffin’ sticks. The Laryngoscope, 117, 114120.Google Scholar
Kjelvik, G., Saltvedt, I., White, L. R., Stenumgård, P., Sletvold, O., Engedal, K., . . . Håberg, A. K. (2014). The brain structural and cognitive basis of odor identification deficits in mild cognitive impairment and Alzheimer's disease. BMC Neurology, 14 (168), 110.Google Scholar
Kouklidou, V., Sfakianaki, O., Moraitou, D., Papantoniou, G., & Masoura, E. (2015). The relationship between cognitive aging and olfactory ability: Comparing young, middle-aged, and older adults in odor identification ability. Journal of Research in Education and Training, 8, 138. (In Greek) http://ejournals.epublishing.ekt.gr/index.php/jret/index Google Scholar
Kovács, T. (2004). Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Research Reviews, 3, 215232.Google Scholar
Kovács, T. (2013). The olfactory system in Alzheimer's disease: Pathology, pathophysiology and pathway for therapy. Translational Neuroscience, 4, 3445. doi:10.2478/s13380-013-0108-3.Google Scholar
Laakso, M. P., Tervo, S., Hänninen, T., Vanhanen, M., Hallikainen, M., & Soininen, H. (2009). Olfactory identification in non-demented elderly population and in mild cognitive impairment: A comparison of performance in clinical odor identification versus Boston naming test. Journal of Neural Transmission, 116, 891895.CrossRefGoogle ScholarPubMed
Larsson, M., Farde, L., Hummel, T., Witt, M., Erixon Lindroth, N., & Backman, L. (2009). Age-related loss of olfactory sensitivity: Association to dopamine transporter binding in putamen. Neuroscience, 161, 422426.Google Scholar
Mesholam, R. I., Moberg, P. J., Mahr, R. N., & Doty, R. L. (1998). Olfaction in neurodegenerative disease: A meta-analysis of olfactory functioning in Alzheimer's and Parkinson's diseases. Archives of Neurology, 55, 8490.Google Scholar
Miwa, T., Watanabe, A., Mitsumoto, Y., Furukawa, M., Fukushima, N., & Moriizumi, T. (2004). Olfactory impairment and Parkinson's disease-like symptoms observed in the common marmoset following administration of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Acta Oto-laryngologica Supplement, 553, 8084.Google Scholar
Montreal Cognitive Assessment (MoCA) (2006). Montreal Cognitive Assessment (MoCA) test full. Retrieved from: http://www.mocatest.org/wp-content/uploads/2015/tests-instructions/MoCA-Test-Greek.pdf (accessed November 21, 2014).Google Scholar
Nasreddine, Z. S., Chertkow, H., Phillips, N., Whitehead, V., Collin, I., & Cummings, J. L. (2004). The Montreal cognitive assessment (MoCA): A brief cognitive screening tool for detection of mild cognitive impairment. Neurology, 62 (7), A132A132.Google Scholar
Ottaviano, G., Frasson, G., Nardello, E., & Martini, A. (2016). Olfaction deterioration in cognitive disorders in the elderly. Aging Clinical and Experimental Research, 28, 3745.Google Scholar
Pantel, J., Kratz, B., Essig, M., & Schroder, J. (2003). Parahippocampal volume deficits in subjects with aging-associated cognitive decline. American Journal of Psychiatry, 160, 379382.Google Scholar
Rahayel, S., Frasnelli, J., & Joubert, S. (2012). The effect of Alzheimer's disease and Parkinson's disease on olfaction: A meta-analysis. Behavioral Brain Research, 231 (1), 6074.Google Scholar
Rawson, N. E., Gomez, G., Cowart, B. J., Kriete, A., Pribitkin, E., & Restrepo, D. (2012). Age-associated loss of selectivity in human olfactory sensory neurons. Neurobiology of Aging, 33, 19131919.Google Scholar
Roberts, R. O., Christianson, T. J., Kremers, W. K., Mielke, M. M., Machulda, M. M., Vassilaki, M., . . ., Petersen, R. C.. (2016). Association between olfactory dysfunction and amnestic mild cognitive impairment and Alzheimer disease dementia. JAMA Neurology, 73, 93101. doi: 10.1001/jamaneurol.2015.2952 Google Scholar
Ruth, J. H. (1986). Odor thresholds and irritation levels of several chemical substances: A review. American Industrial Hygiene, Association Journal, 47 (3), A142A151. PMID: 3706135Google Scholar
Schofield, P. W., Finnie, S., & Yong, Y. M. (2014). The role of olfactory challenge tests in incipient dementia and clinical trial design. Current Neurology and Neuroscience Reports, 14, 479.Google Scholar
Sorokowska, A., Sorokowski, P., & Hummel, T. (2014). Cross-cultural administration of an odor discrimination test. Chemosensory Perception, 7 (2), 8590.Google Scholar
Stamps, J. J., Bartoshuk, L. M., & Heilman, K. M. (2013). A brief olfactory test for Alzheimer's disease. Journal of the Neurological Sciences, 333, 1924.Google Scholar
Vasavada, M. M., Wang, J., Eslinger, P. J., Gill, D. J., Sun, X., Karunanayaka, P., & Yang, Q. X. (2015). Olfactory cortex degeneration in Alzheimer's disease and mild cognitive impairment. Journal of Alzheimer's Disease, 45, 947958.Google Scholar
Velayudhan, L., Pritchard, M., Powell, J. F., Proitsi, P., & Lovestone, S. (2013). Smell identification function as a severity and progression marker in Alzheimer's disease. International Psychogeriatrics, 25, 11571166.Google Scholar
Vyhnalek, M., Magerova, H., Andel, R., Nikolai, T., Kadlecova, A., Laczo, J., Hort, J. (2015). Olfactory identification in amnestic and non-amnestic mild cognitive impairment and its neuropsychological correlates. Journal of the Neurological Sciences, 349, 179184.Google Scholar
Wang, J., Eslinger, P. J., Doty, R. L., Zimmerman, E. K., Grunfeld, R., Sun, X. . . . Yang, Q. X. (2010). Olfactory deficit detected by fMRI in early Alzheimer's disease. Brain Research, 21, 184194.Google Scholar
Wang, Q. S., Tian, L., Huang, Y. L., Qin, S., He, L. Q., & Zhou, J. N. (2002). Olfactory identification and apolipoprotein E ε4 allele in mild cognitive impairment. Brain Research, 951, 7781.Google Scholar
Wesson, D. W., Levy, E., Nixon, R. A., & Wilson, D. A. (2010). Olfactory dysfunction correlates with amyloid-burden in an Alzheimer's disease mouse model. The Journal of Neuroscience, 30, 505514.Google Scholar
Wilson, D. A., Xu, W., Sadrian, B., Courtiol, E., Cohen, Y., & Barnes, D. C. (2014). Cortical odor processing in health and disease. Progress in Brain Research, 208, 275305. doi: 10.1016/B978-0-444-63350-7.00011-5.Google Scholar
Wilson, R. S., Arnold, S. E., Schneider, J. A., Tang, Y., & Bennett, D. A. (2007). The relationship between cerebral Alzheimer's disease pathology and odour identification in old age. Journal of Neurology, Neurosurgery and Psychiatry, 78, 3035.Google Scholar
Xu, F., Lopez-Guzman, M., Schoen, C., Fitzgerald, S., Lauer, S. L., Nixon, R. A., Levy, E., & Wilson, D. A. (2014). Spared piriform cortical single-unit odor processing and odor discrimination in the Tg2576 mouse model of Alzheimer's disease. PLoS One, 9 (9), e106431.Google Scholar
Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., & Leirer, V. O. (1982-1983). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17 (1), 3749.Google Scholar
Yoon, J. H., Kim, M., Moon, S. Y., Yong, S. W., & Hong, J. M. (2015). Olfactory function and neuropsychological profile to differentiate dementia with Lewy bodies from Alzheimer's disease in patients with mild cognitive impairment: A 5-year follow-up study. Journal of the Neurological Sciences, 355, 174179. doi: 10.1016/j.jns.2015.06.013 Google Scholar
Zhang, S., Xiao, Q., & Le, W. (2015). Olfactory dysfunction and neurotransmitter disturbance in olfactory bulb of transgenic mice expressing human A53T mutant α-synuclein. PLoS One, 10 (3), e0119928. doi:10.1371/journal.pone.0119928 Google Scholar
Zou, Y. M., Lu, D., Liu, L. P., Zhang, H. H., & Zhou, Y. Y. (2016). Olfactory dysfunction in Alzheimer's disease. Neuropsychiatric Disease and Treatment, 12, 869875. doi:10.2147/NDT.S104886.Google Scholar