Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T05:09:50.524Z Has data issue: false hasContentIssue false

Working memory for emotions in adolescents and young adults with traumatic brain injury

Published online by Cambridge University Press:  28 October 2021

Lindsey Byom*
Affiliation:
Allied Health Sciences, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
Meaghan S. Whaln
Affiliation:
Allied Health Sciences, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
Lyn Turkstra
Affiliation:
School of Rehabilitation Science, McMaster University, Hamilton, Ontario, Canada
*
*Corresponding author. Email: [email protected]
Get access

Abstract

Objective:

The objective of this preliminary study was to investigate the interaction between working memory and social cognition in adolescents and young adults with traumatic brain injury (TBI). It was hypothesized that participants with or without TBI would better recognize social information when working memory or social cognitive load was low and that adolescents and young adults with TBI would be more affected by increased cognitive demand than their uninjured peers.

Design:

In this experimental study, eight adolescents and young adults with complicated mild-severe TBI (aged 14–22 years) and eight age- and sex-matched typically developing (TD) adolescents completed computer-based n-back tasks requiring recognition of either face identity or facial affect, with 0-back, 1-back and 2-back conditions.

Results:

The TBI group had lower scores overall than the TD group, and scores for both groups were lower for affect recognition than identity recognition. Scores for both groups were lower in conditions with a higher working memory load. There was a significant group by working memory interaction, with larger group differences in high-working memory conditions.

Conclusions:

Adolescents and young adults with TBI are at risk for social cognitive impairments and the ability to recognize affect may be influenced by working memory demands.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Australasian Society for the Study of Brain Impairment

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131(1), 3060.CrossRefGoogle ScholarPubMed
Amadó, A., Serrat, E., & Vallès-Majoral, E. (2016). The role of executive functions in social cognition among children with down syndrome: Relationship patterns. Frontiers in Psychology, 7(1363), 112. doi: 10.3389/fpsyg.2016.01363 CrossRefGoogle ScholarPubMed
Babbage, D. R., Yim, J., Zupan, B., Neumann, D., Tomita, M. R., & Willer, B. (2011). Meta-analysis of facial affect recognition difficulties after traumatic brain injury. Neuropsychology, 25(3), 277285. doi: 10.1037/a0021908 CrossRefGoogle ScholarPubMed
Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417423. doi: 10.1016/s1364-6613(00)01538-2 CrossRefGoogle ScholarPubMed
Best, J. R., & Miller, P. H. (2010). A developmental perspective on executive function. Child Development, 81(6), 16411660. doi: 10.1111/j.1467-8624.2010.01499.x CrossRefGoogle ScholarPubMed
Biehl, M., Matsumoto, D., Ekman, P., Hearn, V., Heider, K., Kudoh, T., & Ton, V. (1997). Matsumoto and Ekman’s Japanese and Caucasian Facial Expressions of Emotion (JACFEE): Reliability data and cross-national differences. Journal of Nonverbal Behavior, 21(1), 321.CrossRefGoogle Scholar
Bigler, E. D. (2001). The lesion(s) in traumatic brain injury: Implications for clinical neuropsychology. Archives of Clinical Neuropsychology, 16(2), 95131. doi: 10.1016/s0887-6177(00)00095-0 CrossRefGoogle ScholarPubMed
Binder, A. S., Lancaster, K., Lengenfelder, J., Chiaravalloti, N. D., & Genova, H. M. (2019). Community integration in traumatic brain injury: The contributing factor of affect recognition deficits. Journal of the International Neuropsychological Society, 25(8), 890895. doi: 10.1017/S1355617719000559 CrossRefGoogle ScholarPubMed
Byom, L., Duff, M., Mutlu, B., & Turkstra, L. (2019). Facial emotion recognition of older adults with traumatic brain injury. Brain Injury, 33(3), 322332.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention (2010). Injury prevention & control: Traumatic brain injury. Atlanta, GA, USA: Centers for Disease Control and Prevention. Retrieved from, http://www.cdc.gov/traumaticbraininjury/statistics.html.Google Scholar
Chapman, S. B., Gamino, J. F., Cook, L. G., Hanten, G., Li, X., & Levin, H. S. (2006). Impaired discourse gist and working memory in children after brain injury. Brain and Language, 97(2), 178188. doi: 10.1016/j.bandl.2005.10.002 CrossRefGoogle ScholarPubMed
Choudhury, S., Blakemore, S.-J., & Charman, T. (2006). Social cognitive development during adolescence. Social Cognitive and Affective Neuroscience, 1(3), 165174. doi: 10.1093/scan/nsl024 CrossRefGoogle ScholarPubMed
Cliff, N. (1993). Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological Bulletin, 114(3), 494509.CrossRefGoogle Scholar
Cohen, J. D., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope: A new graphic interactive environment for designing psychology experiments. Behavioral Research Methods, Instruments, and Computers, 25(2), 257271.CrossRefGoogle Scholar
Conklin, H. M., Luciana, M., Hooper, C. J., & Yarger, R. S. (2007). Working memory performance in typically developing children and adolescents: Behavioral evidence of protracted frontal lobe development. Developmental Neuropsychology, 31(1), 103128. doi: 10.1207/s15326942dn3101_6 CrossRefGoogle ScholarPubMed
Cowan, N. (2010). The magical mystery four: How is working memory capacity limited, and why? Current Directions in Psychological Science, 19(1), 5157.CrossRefGoogle Scholar
Deighton, S., Durish, C. L., Taylor, H. G., Rubin, K., Dennis, M., Bigler, E. D.Yeates, K. O. (2019). Theory of mind and parental nurturance as predictors of peer relationships after childhood traumatic brain injury: A test of moderated mediation. Journal of the International Neuropsychological Society, 25(9), 931940. doi: 10.1017/S135561771900064X,CrossRefGoogle ScholarPubMed
Dennis, M., Simic, N., Gerry Taylor, H., Bigler, E. D., Rubin, K., Vannatta, K.Yeates, K. O. (2012). Theory of mind in children with traumatic brain injury. Journal of the International Neuropsychological Society, 18(5), 908916. doi: 10.1017/S1355617712000756,CrossRefGoogle ScholarPubMed
Donaldson, W. (1992). Measuring recognition memory Journal of Experimental Psychology General, 121(3), 275277, http://www.ncbi.nlm.nih.gov/pubmed/1402701 CrossRefGoogle ScholarPubMed
Ekman, P., & Friesen, W. V. (1976). Pictures of facial affect. Palo Alto, CA, USA: Consulting Psychologists Press.Google Scholar
Embury, C. M., Wiesman, A. I., Proskovec, A. L., Mills, M. S., Heinrichs-Graham, E., Wang, Y.-P.Wilson, T. W. (2019). Neural dynamics of verbal working memory processing in children and adolescents. NeuroImage, 185, 191197. doi: 10.1016/j.neuroimage.2018.10.038 CrossRefGoogle ScholarPubMed
Evans, J. L., Selinger, C., & Pollak, S. D. (2011). P300 as a measure of processing capacity in auditory and visual domains in specific language impairment. Brain Research, 1389, 93102. doi: 10.1016/j.brainres.2011.02.010 CrossRefGoogle ScholarPubMed
Feinberg, I., & Campbell, I. G. (2010). Sleep EEG changes during adolescence: An index of a fundamental brain reorganization. Brain and Cognition, 72(1), 5665. doi: 10.1016/j.bandc.2009.09.008 CrossRefGoogle ScholarPubMed
Gaulin, C. A., & Campbell, T. F. (1994). Procedure for assessing verbal working memory in normal school-age children: Some preliminary data. Perceptual and Motor Skills, 79(1, Pt 1), 5564. doi: 10.2466/pms.1994.79.1.55 CrossRefGoogle ScholarPubMed
Gordon, A. C., & Olson, D. R. (1998). The relation between acquisition of a theory of mind and the capacity to hold in mind. Journal of Experimental Child Psychology, 68(1), 7083.CrossRefGoogle ScholarPubMed
Gorman, S., Barnes, M. A., Swank, P. R., & Ewing-Cobbs, L. (2017). Recovery of working memory following pediatric traumatic brain injury: a longitudinal analysis. Developmental Neuropsychology, 42(3), 127145.CrossRefGoogle ScholarPubMed
Gorman, S., Barnes, M. A., Swank, P. R., Prasad, M., & Ewing-Cobbs, L. (2012). The effects of pediatric traumatic brain injury on verbal and visual-spatial working memory. Journal of the International Neuropsychological Society, 18(1), 2938. doi: 10.1017/S1355617711001251 CrossRefGoogle ScholarPubMed
Hamm, J. V., Farmer, T. W., Lambert, K., & Gravelle, M. (2014). Enhancing peer cultures of academic effort and achievement in early adolescence: Promotive effects of the SEALS intervention. Developmental Psychology, 50(1), 216228. doi: 10.1037/a0032979 CrossRefGoogle ScholarPubMed
Humphrey, G., & Dumontheil, I. (2016). Development of risk-taking, perspective-taking, and inhibitory control during adolescence. Developmental Neuropsychology, 41(1-2), 5976.CrossRefGoogle ScholarPubMed
Im-Bolter, N., Agostino, A., & Owens-Jaffray, K. (2016). Theory of mind in middle childhood and early adolescence: Different from before? Journal of Experimental Child Psychology, 149(5), 98115.CrossRefGoogle Scholar
Kaufman, A. S., & Kaufman, N. L. (2004). K-BIT2: Kaufman brief intelligence test (2nd ed.). Bloomington, MN, USA: NCS Pearson, Inc.Google Scholar
Kelly, M., McDonald, S., & Frith, M. H. J. (2017). A survey of clinicians working in brain injury rehabilitation: Are social cognition impairments on the radar? The Journal of Head Trauma Rehabilitation, 32(4), E55E65. doi: 10.1097/htr.0000000000000269 CrossRefGoogle ScholarPubMed
Kennedy, D. P., & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences, 16(11), 559572.CrossRefGoogle ScholarPubMed
Kilford, E. J., Garrett, E., & Blakemore, S.-J. (2016). The development of social cognition in adolescence: An integrated perspective. Neuroscience & Biobehavioral Reviews, 70(Suppl. 1), 106120.CrossRefGoogle ScholarPubMed
Krause, M., Wendt, J., Dressel, A., Berneiser, J., Kessler, C., Hamm, A. O., & Lotze, M. (2009). Prefrontal function associated with impaired emotion recognition in patients with multiple sclerosis. Behavioral Brain Research, 205(1), 280285, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19686782 CrossRefGoogle ScholarPubMed
Lawrence, K., Campbell, R., & Skuse, D. (2015). Age, gender, and puberty influence the development of facial emotion recognition. Frontiers in Psychology, 6(e20989), 761.CrossRefGoogle ScholarPubMed
Levin, H. S., Hanten, G., Zhang, L., Swank, P. R., Ewing-Cobbs, L., Dennis, M.Hunter, J. V. (2004). Changes in working memory after traumatic brain injury in children. Neuropsychology, 18(2), 240247. doi: 10.1037/0894-4105.18.2.240 CrossRefGoogle ScholarPubMed
Lough, S., Kipps, C. M., Treise, C., Watson, P., Blair, J. R., & Hodges, J. R. (2006). Social reasoning, emotion and empathy in frontotemporal dementia. Neuropsychologia, 44(6), 950958, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16198378 CrossRefGoogle ScholarPubMed
Martin-Rodriguez, J. F., & Leon-Carrion, J. (2010). Theory of mind deficits in patients with acquired brain injury: a quantitative review. Neuropsychologia, 48(5), 11811191. doi: S0028-3932(10)00053-9 CrossRefGoogle ScholarPubMed
Master, S. L., Eckstein, M. K., Gotlieb, N., Dahl, R., Wilbrecht, L., & Collins, A. G. E. (2020). Distentangling the systems contributing to changes in learning during adolescence. Developmental Cognitive Neuroscience, 41, 100732. doi: https://doi.org/10.1016/j.dcn.2019.100732 CrossRefGoogle ScholarPubMed
May, M., Milders, M., Downey, B., Whyte, M., Higgins, V., Wojcik, Z.O’Rourke, S. (2017). Social behavior and impairments in social cognition following traumatic brain injury. Journal of the International Neuropsychological Society, 23(5), 400411. doi: 10.1017/s1355617717000182 CrossRefGoogle ScholarPubMed
McDonald, S. (2013). Impairments in social cognition following severe traumatic brain injury. Journal of the International Neuropsychological Society, 19(3), 231246. doi: 10.1017/S1355617712001506 CrossRefGoogle ScholarPubMed
McDonald, S., English, T., Randall, R., Longman, T., Togher, L., & Tate, R. L. (2013). Assessing social cognition and pragmatic language in adolescents with traumatic brain injuries. Journal of the International Neuropsychological Society, 19(5), 528538. doi: 10.1017/S1355617713000039 CrossRefGoogle ScholarPubMed
McDonald, S., Li, S., De Sousa, A., Rushby, J., Dimoska, A., James, C., & Tate, R. L. (2011). Impaired mimicry response to angry faces following severe traumatic brain injury. Journal of Clinical Experimental Neuropsychology, 33(1), 1729. doi: 10.1080/13803391003761967 CrossRefGoogle ScholarPubMed
Meyer, M. L., & Collier, E. (2020). Theory of minds: managing mental state inferences in working memory is associated with the dorsomedial subsystem of the default network and social integration. Social Cognitive and Affective Neuroscience, 15(1), 6373. doi: 10.1093/scan/nsaa022 CrossRefGoogle ScholarPubMed
Milders, M. (2019). Relationship between social cognition and social behaviour following traumatic brain injury. Brain Injury, 33(1), 6268. doi: 10.1080/02699052.2018.1531301 CrossRefGoogle ScholarPubMed
Moran, C. A., & Gillon, G. (2004). Language and memory profiles of adolescents with traumatic brain injury. Brain Injury, 18(3), 273288. doi: 10.1080/02699050310001617415 CrossRefGoogle ScholarPubMed
Morton, M. V., & Wehman, P. (1995). Psychosocial and emotional sequelae of individuals with traumatic brain injury: a literature review and recommendations. Brain Injury, 9(1), 8192. doi: 10.3109/02699059509004574 CrossRefGoogle ScholarPubMed
Mu, Y. G., Huang, L. J., Li, S. Y., Ke, C., Chen, Y., Jin, Y., & Chen, Z. P. (2012). Working memory and the identification of facial expression in patients with left frontal glioma. Neuro-Oncology, 14(Suppl 4), iv81iv89. doi: 10.1093/neuonc/nos215,CrossRefGoogle ScholarPubMed
Neta, M., & Whalen, P. J. (2011). Individual differences in neural activity during a facial expression vs. identity working memory task. Neuroimage, 56(3), 16851692. doi: 10.1016/j.neuroimage.2011.02.051 CrossRefGoogle ScholarPubMed
Neumann, D., Westerhof-Evers, H. J., Visser-Keizer, A. C., Fasotti, L., Schönherr, M. C., Vink, M.Spikman, J. M. (2017). Effectiveness of a treatment for impairments in social cognition and emotion regulation (T-ScEmo) after traumatic brain injury: A randomized controlled trial. Journal of Head Trauma Rehabilitation, 32(5), 296307.Google Scholar
Newsome, M. R., Scheibel, R. S., Steinberg, J. L., Troyanskaya, M., Sharma, R. G., Rauch, R. A.Levin, H. S. (2007). Working memory brain activation following severe traumatic brain injury. Cortex, 43(1), 95111, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17334210 CrossRefGoogle ScholarPubMed
Perlstein, W. M., Cole, M. A., Demery, J. A., Seignourel, P. J., Dixit, N. K., Larson, M. J., & Briggs, R. W. (2004). Parametric manipulation of working memory load in traumatic brain injury: Behavioral and neural correlates. Journal of the International Neuropsychological Society, 10(5), 724741. doi: 10.1017/S1355617704105110 CrossRefGoogle ScholarPubMed
Philippi, C. L., Mehta, S., Grabowski, T., Adolphs, R., & Rudrauf, D. (2009). Damage to association fiber tracts impairs recognition of the facial expression of emotion. Journal of Neuroscience, 29(48), 1508915099, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19955360 CrossRefGoogle ScholarPubMed
Phillips, N. L., Parry, L., Mandalis, A., & Lah, S. (2017). Working memory outcomes following traumatic brain injury in children: A systematic review with meta-analysis. Child Neuropsychology, 23(1), 2666.CrossRefGoogle ScholarPubMed
Rigon, A., Voss, M. W., Turkstra, L. S., Mutlu, B., & Duff, M. C. (2018). Different aspects of facial affect recognition impairment following traumatic brain injury: The role of perceptual and interpretative abilities. Journal of Clinical and Experimental Neuropsychology, 40(8), 805819.CrossRefGoogle ScholarPubMed
Rogers, A., & McKinlay, A. (2019). The long-term effects of childhood traumatic brain injury on adulthood relationship quality. Brain Injury, 33(5), 649656.CrossRefGoogle ScholarPubMed
Romer, D., Betancourt, L. M., Brodsky, N. L., Giannetta, J. M., Yang, W., & Hurt, H. (2011). Does adolescent risk taking imply weak executive function? A prospective study of relations between working memory performance, impulsivity, and risk taking in early adolescence. Developmental Science, 14(5), 11191133. doi: 10.1111/j.1467-7687.2011.01061.x CrossRefGoogle ScholarPubMed
Rosenberg, H., McDonald, S., Dethier, M., Kessels, R. P. C., & Westbrook, R. F. (2014). Facial emotion recognition deficits following Moderate-Severe traumatic brain injury (TBI): Re-examining the valence effect and the role of emotion intensity. Journal of the International Neuropsychological Society, 20(10), 9941003. doi: 10.1017/S1355617714000940 CrossRefGoogle ScholarPubMed
Rowley, D. A., Rogish, M., Alexander, T., & Riggs, K. J. (2017). Cognitive correlates of pragmatic language comprehension in adult traumatic brain injury: A systematic review and meta-analyses. Brain Injury, 31(12), 15641574.CrossRefGoogle ScholarPubMed
Ryan, N. P., Anderson, V., Bigler, E. D., Dennis, M., Taylor, H. G., Rubin, K.Beauchamp, M. H. (2020). Delineating the nature and correlates of social dysfunction after childhood traumatic brain injury using common data elements: Evidence from an international multi-cohort study. Journal of Neurotrauma, 38(2), 252260.Google ScholarPubMed
Ryan, N. P., Catroppa, C., Beare, R., Silk, T. J., Hearps, S. J., Beauchamp, M. H.Anderson, V. A. (2017). Uncovering the neuroanatomical correlates of cognitive, affective and conative theory of mind in paediatric traumatic brain injury: A neural systems perspective. Social Cognitive and Affective Neuroscience, 12(9), 14141427.CrossRefGoogle ScholarPubMed
Sarmiento, K., Thomas, K. E., Daugherty, J., Waltzman, D., Haarbauer-Krupa, J. K., Peterson, A. B.Breiding, M. J. (2019). Emergency department visits for sports-and recreation-related traumatic brain injuries among children—United States, 2010-2016. Morbidity and Mortality Weekly Report, 68(10), 237242.CrossRefGoogle ScholarPubMed
Schmidt, A. T., Hanten, G. R., Li, X., Orsten, K. D., & Levin, H. S. (2010). Emotion recognition following pediatric traumatic brain injury: Longitudinal analysis of emotional prosody and facial emotion recognition. Neuropsychologia, 48(10), 28692877. doi: 10.1016/j.neuropsychologia.2010.05.029 CrossRefGoogle ScholarPubMed
Simmonds, D. J., Hallquist, M. N., & Luna, B. (2017). Protracted development of executive and mnemonic brain systems underlying working memory in adolescence: A longitudinal fMRI study. NeuroImage, 157(5044), 695704.CrossRefGoogle ScholarPubMed
Smith, R., Lane, R. D., Alkozei, A., Bao, J., Smith, C., Sanova, A.Killgore, W. D. (2017). Maintaining the feelings of others in working memory is associated with activation of the left anterior insula and left frontal-parietal control network. Social Cognitive and Affective Neuroscience, 12(5), 848860.CrossRefGoogle ScholarPubMed
Sohlberg, M. M., MacDonald, S., Byom, L., Iwashita, H., Lemoncello, R., Meulenbroek, P.O’Neil-Pirozzi, T. M. (2019). Social communication following traumatic brain injury part I: State-of-the-art review of assessment tools. International Journal of Speech-Language Pathology, 21(2), 115127.CrossRefGoogle ScholarPubMed
Spikman, J. M., Milders, M. V., Visser-Keizer, A. C., Westerhof-Evers, H. J., Herben-Dekker, M., & van der Naalt, J. (2013). Deficits in facial emotion recognition indicate behavioral changes and impaired self-awareness after moderate to severe traumatic brain injury. PLoS One, 8(6), e65581. doi: 10.1371/journal.pone.0065581 CrossRefGoogle ScholarPubMed
Steinberg, L. (2010). Adolescence (9th ed.). New York, NY, USA: McGraw-Hill College.Google Scholar
Tamnes, C. K., Herting, M. M., Goddings, A.-L., Meuwese, R., Blakemore, S.-J., Dahl, R. E.Millis, K. L. (2017). Development of the cerebral cortex across adolescence: A multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. The Journal of Neuroscience, 37(12), 34023412. doi: 10.1523/jneurosci.3302-16.2017 CrossRefGoogle ScholarPubMed
Taylor, C. A., Bell, J. M., Breiding, M. J., & Xu, L. (2017). Traumatic brain injury-related emergency department visits, hospitalizations, and deaths -- United States, 2007 and 2013. MMWR Surveillance Summaries, 66(9), 116. doi: 10.15585/mmwr.ss6609a1 CrossRefGoogle ScholarPubMed
Thomas, L. A., De Bellis, M. D., Graham, R., & LaBar, K. S. (2007). Development of emotional facial recognition in late childhood and adolescence. Developmental Science, 10(5), 547558.CrossRefGoogle ScholarPubMed
Thornton, M. A., & Conway, A. R. (2013). Working memory for social information: Chunking or domain-specific buffer? Neuroimage, 70, 233239. doi: 10.1016/j.neuroimage.2012.12.063 CrossRefGoogle ScholarPubMed
Tonks, J., Slater, A., Frampton, I., Wall, S. E., Yates, P., & Williams, W. H. (2009). The development of emotion and empathy skills after childhood brain injury. Developmental Medicine and Child Neurology, 51(1), 816. doi: DMCN321910.1111/j.1469-8749.2008.03219.x CrossRefGoogle ScholarPubMed
Tonks, J., Williams, W. H., Frampton, I., Yates, P., Wall, S. E., & Slater, A. (2008). Reading emotions after childhood brain injury: Case series evidence of dissociation between cognitive abilities and emotional expression processing skills. Brain Injury, 22(4), 325332. doi: 79171448410.1080/02699050801968303 CrossRefGoogle ScholarPubMed
Tousignant, B., Jackson, P. L., Massicotte, E., Beauchamp, M. H., Achim, A. M., Vera-Estay, E.Sirois, K. (2018). Impact of traumatic brain injury on social cognition in adolescents and contribution of other higher order cognitive functions. Neuropsychological Rehabilitation, 28(3), 429447. doi: 10.1080/09602011.2016.1158114 CrossRefGoogle ScholarPubMed
Tousignant, B., Sirois, K., Achim, A. M., Massicotte, E., & Jackson, P. L. (2017). A comprehensive assessment of social cognition from adolescence to adulthood. Cognitive Development, 43, 214223. doi: https://doi.org/10.1016/j.cogdev.2017.05.001 CrossRefGoogle Scholar
Tuerk, C., Dégeilh, F., Catroppa, C., Dooley, J. J., Kean, M., Anderson, V., & Beauchamp, M. H. (2020). Altered resting-state functional connectivity within the developing social brain after pediatric traumatic brain injury. Human Brain Mapping, 41(2), 561576. doi: 10.1002/hbm.24822 CrossRefGoogle ScholarPubMed
Turkstra, L. S. (2000). Should my shirt be tucked in or left out? The communication context of adolescence Aphasiology, 14(4), 349364.CrossRefGoogle Scholar
Turkstra, L. S., McDonald, S., & DePompei, R. (2001). Social information processing in adolescents: Data from normally developing adolescents and preliminary data from their peers with traumatic brain injury. Journal of Head Trauma Rehabilitation, 16(5), 469483, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11574042 CrossRefGoogle ScholarPubMed
Valentine, T., Powell, J., Davidoff, J., Letson, S., & Greenwood, R. (2006). Prevalence and correlates of face recognition impairments after acquired brain injury. Neuropsychological Rehabilitation, 16(3), 272297. doi: 10.1080/09602010500176443 CrossRefGoogle ScholarPubMed
Vetter, N. C., Drauschke, M., Thieme, J., & Altgassen, M. (2018). Adolescent basic facial emotion recognition is not influenced by puberty or own-age bias. Frontiers in Psychology, 9, 956.CrossRefGoogle ScholarPubMed
Yeates, K. O., Swift, E., Taylor, H. G., Wade, S. L., Drotar, D., Stancin, T., & Minich, N. (2004). Short- and long-term social outcomes following pediatric traumatic brain injury. Journal of the International Neuropsychological Society, 10(3), 412426, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15147599 CrossRefGoogle Scholar