Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-04-25T14:13:03.001Z Has data issue: false hasContentIssue false

Utilising mitochondrial barcode sequencing to evaluate phylogeographical structure and guide the release of illegally traded Amazon parrots

Published online by Cambridge University Press:  20 December 2024

Luis Alejandro Arias-Sosa*
Affiliation:
Grupo Biodiversidad y Conservación Genética, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia Grupo Ecología de Organismos (GEO-UPTC), Escuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
Carlos Miguel Del Valle-Useche
Affiliation:
Laboratorio de Identificación Genética Forense de Especies Silvestres de la DIJIN, Bogotá, Colombia
Claudia Brieva
Affiliation:
Faculta de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, Colombia
Sergio Tusso
Affiliation:
Division of Genetics, Faculty of Biology, Ludwig Maximilian Universität Munich, Germany
Mario Vargas-Ramírez
Affiliation:
Grupo Biodiversidad y Conservación Genética, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia Phylogeography Section, Museum of Zoology Senckenberg Dresden, Dresden, Germany
*
Corresponding author: Luis Alejandro Arias-Sosa; Email: [email protected]

Summary

Amazon parrots stand out as one of the most illegally traded Psittacids in the neotropics. However, the lack of effective tools for determining the geographical origin of confiscated individuals has impeded the development of well-informed release programmes. In this study, we evaluated the efficacy of the cytochrome oxidase subunit I (COI) gene to identify phylogeographical groups and infer the origins of seized individuals across six Amazon parrot species. Through comprehensive genetic and phylogenetic analyses of 140 COI sequences from individuals with documented geographical origin, a genetic reference database was assembled. The most likely origin of 156 seized parrots was inferred by comparing their genotype to this database. Within the Yellow-headed Parrot Amazona ochrocephala species complex, our analyses revealed the presence of seven distinct phylogeographical groups, exposing a notable poaching impact in the Middle Magdalena’s river valley. For the Southern Mealy Amazon A. farinosa, three distinct genetic groups were identified, with seized individuals showing comparable proportions originating from both the Cis- and Trans-Andean regions. Noteworthy genetic differentiation was observed between individuals of Festive Amazon A. festiva from the Caquetá–Amazon Rivers and those from the Meta River, with two seized individuals assigned to the former. The Scaly-naped Amazon A. mercenaria exhibited genetic divergence between individuals from the central Andes and the Sierra Nevada de Santa Marta. In contrast, the Orange-winged Amazon A. amazonica and Red-lored Amazon A. autumnalis did not display significant phylogeographical structure. However, analyses of seized individuals of A. amazonica suggested a potential underestimation of its genetic diversity and structure. This study illustrates the utility of mitochondrial molecular markers in determining the most probable area of origin for confiscated Amazon parrots, aiding in release programmes and enhancing the monitoring of natural populations.

Resumen

Resumen

Los loros del género Amazona se destacan como uno de los Psitácidos más comerciados ilegalmente en el Neotrópico. Sin embargo, la falta de herramientas efectivas para determinar el origen geográfico de individuos confiscados, ha obstaculizado el desarrollo de programas de liberación bien fundamentados. En este estudio, evaluamos la eficacia del gen de la subunidad I de la Citocromo Oxidasa (COI) para identificar grupos filogeográficos e inferir los orígenes de individuos incautados de seis especies de loros Amazona. A través de análisis genéticos y filogenéticos integrales de 140 secuencias de COI de individuos con origen geográfico documentado, se estableció una base de datos genética de referencia. Determinamos el origen más probable de 156 loros incautados comparando sus genotipos con esta base de datos. Dentro del complejo de especies del loro de cabeza amarilla, Amazona ochrocephala, nuestros análisis revelaron la presencia de siete grupos filogeográficos distintos, evidenciando un impacto notable de la caza furtiva en el valle Medio del río Magdalena. Para A. farinosa, se identificaron tres grupos genéticos distintos, con individuos incautados mostrando proporciones comparables de ambos lados de los Andes (Cis y Transandinos). Se observó una diferenciación genética significativa entre individuos de A. festiva de los ríos Caquetá–Amazonas y aquellos del río Meta, asignandose dos individuos incautados al primer grupo. Amazona mercenaria mostró divergencia genética entre individuos de los Andes centrales y la Sierra Nevada de Santa Marta. En contraste, A. amazonica y A. autumnalis no mostraron una estructura filogeográfica significativa. Sin embargo, los análisis de individuos incautados de A. amazonica sugirieron una posible subestimación de su diversidad y estructura genética. Este estudio ilustra la utilidad de los marcadores moleculares mitocondriales para determinar el área de origen más probable de loros Amazona confiscados, ayudando en programas de liberación y mejorando el monitoreo de poblaciones naturales.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Angulo-Pratolongo, F. (2018). Actualización del conocimiento del estado de conservación de las aves del Perú. In Servicio Nacional Forestal y de Fauna Silvestre (Serfor) (ed.), Libro Rojo de la Fauna Silvestre Amenazada del Perú, 1st Edn. Lima: Serfor, pp. 157168.Google Scholar
Ayerbe-Quiñones, F. (2018). Guía Ilustrada de la Avifauna Colombiana, Bogotá: Wildlife Conservation Society.Google Scholar
Bellagamba, F., Velayutham, D., Cozzi, M.C., Caprino, F., Vasconi, M., Busetto, M.L. et al. (2016). Cytochrome oxidase-I sequence based studies of commercially available Pangasius hypophthalmus in Italy. Italian Journal of Animal Science 14, 378382. https://doi.org/10.4081/IJAS.2015.3928Google Scholar
Caparroz, R., Miyaki, C.Y. and Baker, A.J. (2009a). Contrasting phylogeographic patterns in mitochondrial DNA and microsatellites: Evidence of female philopatry and male-biased gene flow among regional populations of the Blue-and-yellow Macaw (Psittaciformes: Ara ararauna) in Brazil. The Auk 126, 359370. https://doi.org/10.1525/auk.2009.07183CrossRefGoogle Scholar
Caparroz, R., Seixas, G.H.F., Berkunsky, I. and Collevatti, R.G. (2009b). The role of demography and climatic events in shaping the phylogeography of Amazona aestiva (Psittaciformes, Aves) and definition of management units for conservation. Diversity and Distributions 15, 459468. https://doi.org/10.1111/j.1472-4642.2009.00558.xCrossRefGoogle Scholar
Chan, D.T.C., Poon, E.S.K., Wong, A.T.C. and Sin, S.Y.W. (2021). Global trade in parrots – Influential factors of trade and implications for conservation. Global Ecology and Conservation 30, e01784. https://doi.org/10.1016/j.gecco.2021.e01784CrossRefGoogle Scholar
Choperena Palencia, M.C. and Mancera Rodríguez, N.J. (2016). Lineamientos para el seguimiento y monitoreo post-liberación de fauna silvestre rehabilitada. Revista U.D.C.A Actualidad & Divulgación Científica 19, 411424. https://doi.org/10.31910/rudca.v19.n2.2016.96CrossRefGoogle Scholar
Coghlan, M.L., White, N.E., Parkinson, L., Haile, J., Spencer, P.B.S. and Bunce, M. (2012). Egg forensics: An appraisal of DNA sequencing to assist in species identification of illegally smuggled eggs. Forensic Science International. Genetics 6, 268273. https://doi.org/10.1016/J.FSIGEN.2011.06.006CrossRefGoogle ScholarPubMed
Colihueque, N., Gantz, A. and Parraguez, M. (2021). Revealing the biodiversity of Chilean birds through the COI barcode approach. ZooKeys 1016, 143161. https://doi.org/10.3897/ZOOKEYS.1016.51866CrossRefGoogle ScholarPubMed
Cruz, C.E.F., Funkler, G.R., Zani, A.L.S., Wagner, P.G.C., Andretta, I., Segura, L.N. et al. (2021). A preliminary assessment of the potential health and genetic impacts of releasing confiscated passerines into the wild: A reduced-risk approach. Frontiers in Veterinary Science 8, 679049. https://doi.org/10.3389/fvets.2021.679049CrossRefGoogle Scholar
de Carvalho, C.B.V. (2013). The use of DNA barcoding to identify feathers from illegally traded birds. Brazilian Journal of Forensic Sciences, Medical Law and Bioethics 2, 327332. https://doi.org/10.17063/bjfs2(4)y2013327CrossRefGoogle Scholar
Deagle, B.E., Jarman, S.N., Coissac, E., Pompanon, F. and Taberlet, P. (2014). DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters 10, 20140562. https://doi.org/10.1098/RSBL.2014.0562CrossRefGoogle Scholar
del Hoyo, J. and Collar, N.J. (2015). Illustrated Checklist of the Birds of the World: vol.1: Non-passerines. Barcelona: Lynx Edicions/BirdLife International.Google Scholar
Develey, P.F. (2021). Bird Conservation in Brazil: Challenges and practical solutions for a key megadiverse country. Perspectives in Ecology and Conservation 19, 171178. https://doi.org/10.1016/j.pecon.2021.02.005CrossRefGoogle Scholar
Donegan, T., Ellery, T., Pacheco, J.A., Verhelst, J.C. and Salaman, P. (2018). Revision of the status of bird species occurring or reported in Colombia 2018. Conservacion Colombiana 25, 447.CrossRefGoogle Scholar
Drummond, A.J. and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214. https://doi.org/10.1186/1471-2148-7-214CrossRefGoogle ScholarPubMed
Eberhard, J.R. and Bermingham, E. (2004). Phylogeny and biogeography of the Amazona Ochrocephala (Aves: Psittacidae) Complex. The Auk 121, 318332. https://doi.org/10.1093/auk/121.2.318CrossRefGoogle Scholar
Eberhard, J.R. and Wright, T.F. (2016). Rearrangement and evolution of mitochondrial genomes in parrots. Molecular Phylogenetics and Evolution 94(Pt A), 3446. https://doi.org/10.1016/J.YMPEV.2015.08.011CrossRefGoogle ScholarPubMed
Eberhard, J.R., Wright, T.F. and Bermingham, E. (2001). Duplication and concerted evolution of the mitochondrial control region in the parrot genus Amazona. Molecular Biology and Evolution 18, 13301342. https://doi.org/10.1093/oxfordjournals.molbev.a003917CrossRefGoogle ScholarPubMed
Edgar, R.C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 17921797. https://doi.org/10.1093/nar/gkh340CrossRefGoogle ScholarPubMed
Etter, A. (1993). Diversidad ecosistemica en Colombia hoy. In Nuestra Diversidad Biologica, vol. 1. Bogotá: Cerec-Fundación Alejandro Angel Escobar, pp. 4461.Google Scholar
Excoffier, L., Laval, G. and Schneider, S. (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1, 4750. https://doi.org/10.1177/117693430500100003CrossRefGoogle Scholar
Fallon, S.M. (2007). Genetic data and the listing of species under the U.S. endangered species act. Conservation Biology 21, 11861195. https://doi.org/10.1111/j.1523-1739.2007.00775.xCrossRefGoogle ScholarPubMed
Fernandes, G.A. and Caparroz, R. (2013). DNA sequence analysis to guide the release of blue-and-yellow macaws (Ara ararauna, Psittaciformes, Aves) from the illegal trade back into the wild. Molecular Biology Reports 40, 27572762. https://doi.org/10.1007/S11033-012-2294-4CrossRefGoogle ScholarPubMed
Formentão, L., Saraiva, A.S. and Marrero, A.R. (2021). DNA barcoding exposes the need to control the illegal trade of eggs of non-threatened parrots in Brazil. Conservation Genetics Resources 13, 275281. https://doi.org/10.1007/S12686-021-01209-4CrossRefGoogle Scholar
Forshaw, J.M. (2010). Parrots of the World. Princeton Field Guides . Princeton: Princeton University Press.Google Scholar
Frankham, R., Ballou, J.D., Eldridge, M.D.B., Lacy, R.C., Ralls, K., Dudash, M.R. et al. (2011). Predicting the probability of outbreeding depression. Conservation Biology 25, 465475. https://doi.org/10.1111/J.1523-1739.2011.01662.XCrossRefGoogle ScholarPubMed
Fuhrmann, N. and Kaiser, T.S. (2021). The importance of DNA barcode choice in biogeographic analyses – a case study on marine midges of the genus Clunio. Genome 64, 242252. https://doi.org/10.1139/GEN-2019-0191CrossRefGoogle ScholarPubMed
Gippoliti, S., Cotterill, F.P.D., Groves, C.P. and Zinner, D. (2018). Poor taxonomy and genetic rescue are possible co-agents of silent extinction and biogeographic homogenization among ungulate mammals. Biogeographia 33, 4154. https://doi.org/10.21426/B633039045Google Scholar
Gonçalves, P.F.M., Oliveira-Marques, A.R., Matsumoto, T.E. and Miyaki, C.Y. (2015). DNA barcoding identifies illegal parrot trade. Journal of Heredity 106, 560564. https://doi.org/10.1093/JHERED/ESV035CrossRefGoogle ScholarPubMed
Ham-Dueñas, J.G., Canales-Del-Castillo, R., Voelker, G., Ruvalcaba-Ortega, I., Aguirre-Calderón, C.E. and González-Rojas, J.I. (2020). Adaptive genetic diversity and evidence of population genetic structure in the endangered Sierra Madre Sparrow (Xenospiza baileyi). PLOS ONE 15, e0232282. https://doi.org/10.1371/JOURNAL.PONE.0232282CrossRefGoogle ScholarPubMed
Hatten, C.E.R., Fitriana, Y.S., Prigge, T.L., Irham, M., Sutrisno, H., Abinawanto, et al. (2023). DNA analysis and validation for species identification of seized helmeted hornbill (Rhinoplax vigil) casques. Forensic Science International: Animals and Environments 3, 100058. https://doi.org/10.1016/j.fsiae.2022.100058Google Scholar
Hellmich, D.L., Saidenberg, A.B.S. and Wright, T.F. (2021). Genetic, but not behavioral, evidence supports the distinctiveness of the mealy amazon parrot in the Brazilian Atlantic forest. Diversity 13, 273. https://doi.org/10.3390/d13060273CrossRefGoogle Scholar
Hilty, S. L. (2021) Birds of Colombia. Barcelona: Lynx Edicions/BirdLife International.Google Scholar
Hoyos, M., Tusso, S., Bedoya, T.R., Manrique Gaviria, A.S. and Bloor, P. (2017). A simple and cost-effective method for obtaining DNA from a wide range of animal wildlife samples. Conservation Genetics Resources 9, 513521. https://doi.org/10.1007/s12686-017-0735-zCrossRefGoogle Scholar
Ishida, Y., Georgiadis, N.J., Hondo, T. and Roca, A.L. (2013). Triangulating the provenance of African elephants using mitochondrial DNA. Evolutionary Applications 6, 253265. https://doi.org/10.1111/J.1752-4571.2012.00286.XCrossRefGoogle ScholarPubMed
Jacobs, A., De Noia, M., Praebel, K., Kanstad-Hanssen, Ǿ., Paterno, M., Jackson, D. et al. (2018). Genetic fingerprinting of salmon louse (Lepeophtheirus salmonis) populations in the North-East Atlantic using a random forest classification approach. Scientific Reports 8, 1203. https://doi.org/10.1038/s41598-018-19323-zCrossRefGoogle Scholar
Jaramillo-Castaño, M.J. (2020). Validación de Caracteres Morfológicos Diagnósticos y Estandarización de Condiciones de PCR de Marcadores Mitocondriales, para la Identificación de Tres Subespecies de Amazona ochrocephala (A. o. ochrocephala, A. o. nattereri, A. o. panamensis) Psittacidae. Bogotá: Pontificia Universidad Javeriana.Google Scholar
Kerr, K.C.R., Lijtmaer, D.A., Barreira, A.S., Hebert, P.D.N. and Tubaro, P.L. (2009). Probing evolutionary patterns in Neotropical birds through DNA barcodes. PLOS ONE 4, e4379. https://doi.org/10.1371/JOURNAL.PONE.0004379CrossRefGoogle ScholarPubMed
Kim, J., Do, T.D., Duri, L., Yeo, Y. and Kim, C.-B. (2020). Application of cytochrome b gene sequences for identification of parrots from Korean zoos. Animal Systematics, Evolution and Diversity 36, 216221. https://doi.org/10.5635/ASED.2020.36.3.028Google Scholar
Kolchanova, S., Komissarov, A., Kliver, S., Mazo-Vargas, A., Afanador, Y., Velex-Valentin, J. et al. (2021). Molecular phylogeny and evolution of Amazon parrots in the Greater Antilles. Genes 12, 608. https://doi.org/10.3390/genes12040608CrossRefGoogle ScholarPubMed
Kongrit, C., Markviriya, D., Laithong, P. and Khudamrongsawat, J. (2020). Species identification and unlocking hidden genetic diversity of confiscated slow lorises (Nycticebus spp.) based on mitochondrial DNA markers. Folia Primatologica 91, 114. https://doi.org/10.1159/000500007CrossRefGoogle ScholarPubMed
Kumar, S., Nei, M., Dudley, J. and Tamura, K. (2008). MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9, 299306. https://doi.org/10.1093/bib/bbn017CrossRefGoogle Scholar
LaCasella, E.L., Jensen, M.P., Madden Hof, C.A., Bell, I.P., Frey, A. and Dutton, P.H. (2021). Mitochondrial DNA profiling to combat the illegal trade in tortoiseshell products. Frontiers in Marine Science 7, 595853. https://doi.org/10.3389/fmars.2020.595853CrossRefGoogle Scholar
Liew, J.H., Kho, Z.Y., Lim, R.B.H., Dingle, C., Bonebrake, T.C., Sung, Y.H. et al. (2021). International socioeconomic inequality drives trade patterns in the global wildlife market. Science Advances 7, eabf7679. https://doi.org/10.1126/sciadv.abf7679CrossRefGoogle ScholarPubMed
Mendivelso-Gamboa, D.A. and Montenegro, O.L. (2007). Diagnóstico del tráfico ilegal y del manejo post decomiso de fauna silvestre en nueve corporaciones autónomas regionales de Colombia. Acta Biológica Colombiana 12(Suppl.), 125127.Google Scholar
Mendoza, Á.M., Torres, M.F., Paz, A., Trujillo-Arias, N., López-Alvarez., Sierra S. et al. (2016). Cryptic diversity revealed by DNA barcoding in Colombian illegally traded bird species. Molecular Ecology Resources 16, 862873. https://doi.org/10.1111/1755-0998.12515CrossRefGoogle ScholarPubMed
Mercado, A.S., Asmussen, M., Rodriguez, J.P., Moran, L., Cardozo-Urdaneta, A. and Morales, L.I. (2020). Illegal trade of the Psittacidae in Venezuela. Oryx 54, 7783. https://doi.org/10.1017/S003060531700120XCrossRefGoogle Scholar
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. et al. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37, 15301534. https://doi.org/10.1093/molbev/msaa015CrossRefGoogle ScholarPubMed
Ministerio de Ambiente vivienda y Desarrollo Territorial (2010). Resolución 2064 de 2010. Por la Cual se Reglamentan las Medidas Posteriores a la Aprehensión Preventiva, Restitución o Decomiso de Especímenes de Especies Silvestres de Fauna y Flora Terrestre y Acuática y se Dictan otras Disposiciones. Bogotá: Ministerio de Ambiente vivienda y Desarrollo Territorial.Google Scholar
Mota-Rojas, D., Strappini, A., Whittaker, A.L., Ghezzi, M., Gonçalves Titto, C., Calderón-Maldonado, N. et al. (2023). Controversial topics in animal welfare in Latin America: A focus on the legislation surrounding the human–companion animal relationship and animals used for recreational practices. Animals 13, 1463. https://doi.org/10.3390/ani13091463CrossRefGoogle ScholarPubMed
Nakahama, N. (2021). Museum specimens: An overlooked and valuable material for conservation genetics. Ecological Research 36, 1323. https://doi.org/10.1111/1440-1703.12181CrossRefGoogle Scholar
Noreña, A.P., González Muñoz, A., Mosquera-Rendón, J., Botero, K. and Cristancho, M.A. (2018). Colombia, an unknown genetic diversity in the era of Big Data. BMC Genomics 19(Suppl. 8), 859. https://doi.org/10.1186/s12864-018-5194-8CrossRefGoogle Scholar
Oklander, L.I., Caputo, M., Solari, A. and Corach, D. (2020). Genetic assignment of illegally trafficked neotropical primates and implications for reintroduction programs. Scientific Reports 10, 3676. https://doi.org/10.1038/s41598-020-60569-3CrossRefGoogle ScholarPubMed
Pires, S.F., Schneider, J.L., Herrera, M. and Tella, J.L. (2016). Spatial, temporal and age sources of variation in parrot poaching in Bolivia. Bird Conservation International 26, 293306. https://doi.org/10.1017/S095927091500026XCrossRefGoogle Scholar
Posada, D. (2008). jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25, 12531256. https://doi.org/10.1093/molbev/msn083CrossRefGoogle ScholarPubMed
Presti, F.T., Guedes, N.M.R., Antas, P.T.Z. and Miyaki, C.Y. (2015). Population genetic structure in hyacinth macaws (Anodorhynchus hyacinthinus) and identification of the probable origin of confiscated individuals. Journal of Heredity 106(S1), 491502. https://doi.org/10.1093/JHERED/ESV038CrossRefGoogle ScholarPubMed
Rambaut, A., Drummond, A.J., Xie, D., Baele, G. and Suchard, M.A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67, 901904. https://doi.org/10.1093/sysbio/syy032CrossRefGoogle ScholarPubMed
Renjifo, L.M., Amaya-Villarreal, A.M., Burbano-Girón, J. and Velásquez-Tibatá, J. (2016). Libro Rojo de Aves de Colombia, Volumen II: Ecosistemas Abiertos, Secos, Insulares, Acuáticos Continentales, Marinos , Tierras Altas del Darién y Sierra Nevada de Santa Marta y Bosques Húmedos del Centro, Norte y Oriente del País. Bogotá: Editorial Pontificia Universidad Javeriana e Instituto Alexander von Humboldt.Google Scholar
Renjifo, L.M., Amaya-Villarreal, A.M. and Butchart, S.H.M. (2020). Tracking extinction risk trends and patterns in a mega-diverse country: A Red List Index for birds in Colombia. PLOS ONE 15, e0227381. https://doi.org/10.1371/journal.pone.0227381CrossRefGoogle Scholar
Restrepo-Rodas, D.C. and Pulgarín-Restrepo, P.C. (2017). Dinámicas de los loros en cautiverio en Colombia: tráfico, mortalidad y liberación. Ornitologia Colombiana 16, 123.Google Scholar
Ribas, C.C., Tavares, E.S., Yoshihara, C. and Miyaki, C.Y. (2007). Phylogeny and biogeography of Yellow-headed and Blue-fronted Parrots (Amazona ochrocephala and Amazona aestiva) with special reference to the South American taxa. Ibis 149, 564574. https://doi.org/10.1111/J.1474-919X.2007.00681.XCrossRefGoogle Scholar
Rivera-Ortíz, F.A., Arizmendi, M.D.C., Juan-Espinosa, J., Solórzano, S. and Contreras-González, A.M. (2021). Genetic assignment tests to identify the probable geographic origin of a captive specimen of Military Macaw (Ara militaris) in Mexico: Implications for conservation. Diversity 13, 245. https://doi.org/10.3390/d13060245CrossRefGoogle Scholar
Rivera-Ortíz, F.A., Solórzano, S., Arizmendi, M., del, C., Dávila-Aranda, P. and Oyama, K. (2020). Genetic diversity and structure of the Military Macaw (Ara militaris) in Mexico: Implications for conservation. Tropical Conservation Science 10. https://doi.org/10.1177/1940082916684346Google Scholar
Roach, N.S., Urbina-Cardona, N. and Lacher, T.E. (2020). Land cover drives amphibian diversity across steep elevational gradients in an isolated neotropical mountain range: Implications for community conservation. Global Ecology and Conservation 22, e00968. https://doi.org/10.1016/j.gecco.2020.e00968CrossRefGoogle Scholar
Rocha, A.V., Rivera, L.O., Martinez, J., Prestes, N.P. and Caparroz, R. (2014). Biogeography of speciation of two sister species of neotropical Amazona (Aves, Psittaciformes) based on mitochondrial sequence data. PLOS ONE 9, 108096. https://doi.org/10.1371/journal.pone.0108096CrossRefGoogle ScholarPubMed
Rodrigues, A.D.S., Brandão, J.H.S.G., Bitencourt, J.D.A., Jucá-Chagas, R., Sampaio, I., Schneider, H. et al. (2016). Molecular identification and traceability of illegal trading in Lignobrycon myersi (Teleostei: Characiformes), a threatened Brazilian fish species, using DNA barcode. The Scientific World Journal 2016, 9382613. https://doi.org/10.1155/2016/9382613CrossRefGoogle ScholarPubMed
Rosen, G.E. and Smith, K.F. (2010). Summarizing the evidence on the International Trade in Illegal Wildlife. Ecohealth 7, 2432. https://doi.org/10.1007/S10393-010-0317-YCrossRefGoogle ScholarPubMed
Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E. et al. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34, 32993302. https://doi.org/10.1093/molbev/msx248CrossRefGoogle ScholarPubMed
Rubinoff, D., Cameron, S. and Will, K. (2006). A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. Journal of Heredity 97, 581594. https://doi.org/10.1093/jhered/esl036CrossRefGoogle ScholarPubMed
Ruiz-García, M., Leguizamón, N., Vásquez, C., Rodríguez, K. and Castillo, M.I. (2010). Métodos genéticos para la reintroducción de monos de los géneros Saguinus, Aotus y Cebus (Primates: Cebidae) decomisados en Bogotá, Colombia. Revista de Biologia Tropical 58, 10491067. https://doi.org/10.15517/rbt.v58i2.5262Google Scholar
Russello, M.A. and Amato, G. (2004). A molecular phylogeny of Amazona: implications for Neotropical parrot biogeography, taxonomy, and conservation. Molecular Phylogenetics and Evolution 30, 421437. https://doi.org/10.1016/S1055-7903(03)00192-1CrossRefGoogle ScholarPubMed
Scheffers, B.R., Oliveira, B.F., Lamb, I. and Edwards, D.P. (2019). Global wildlife trade across the tree of life. Science 366, 7176. https://doi.org/10.1126/SCIENCE.AAV5327CrossRefGoogle ScholarPubMed
Schirtzinger, E.E., Tavares, E.S., Gonzales, L.A., Eberhard, J.R., Miyaki, C.Y., Sanchez, J.J. et al. (2012). Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes. Molecular Phylogenetics and Evolution 64, 342356. https://doi.org/10.1016/J.YMPEV.2012.04.009CrossRefGoogle ScholarPubMed
Schmidt, K.L., Aardema, M.L. and Amato, G. (2020). Genetic analysis reveals strong phylogeographical divergences within the Scarlet Macaw Ara macao. Ibis 162, 735748. https://doi.org/10.1111/ibi.12760CrossRefGoogle Scholar
Smith, B.T., Merwin, J., Provost, K.L., Thom, G., Brumfield, R.T., Ferreira, M. et al. (2023). Phylogenomic analysis of the parrots of the world distinguishes artifactual from biological sources of gene tree discordance. Systematic Biology 72, 228241. https://doi.org/10.1093/sysbio/syac055CrossRefGoogle ScholarPubMed
Tavares, E.S., Gonçalves, P., Miyaki, C.Y. and Baker, A.J. (2011). DNA barcode detects high genetic structure within Neotropical bird species. PLOS ONE 6, e28543. https://doi.org/10.1371/JOURNAL.PONE.0028543CrossRefGoogle ScholarPubMed
Tella, J.L. and Hiraldo, F. (2014). Illegal and legal parrot trade shows a long-term, cross-cultural preference for the most attractive species increasing their risk of extinction. PLOS ONE 9, e107546. https://doi.org/10.1371/JOURNAL.PONE.0107546CrossRefGoogle Scholar
Tilston-Smith, B., Thom, G. and Joseph, L. (2024). Revised evolutionary and taxonomic synthesis for parrots (Order: Psittaciformes) guided by phylogenomic analysis. Bulletin of the American Museum of Natural History 468, 187.Google Scholar
Tizard, J., Patel, S., Waugh, J., Tavares, E., Bergmann, T., Gill, B. et al. (2019). DNA barcoding a unique avifauna: an important tool for evolution, systematics and conservation. BMC Evolutionary Biology 19, 52. https://doi.org/10.1186/S12862-019-1346-YCrossRefGoogle ScholarPubMed
Tonkin-Hill, G., Lees, J.A., Bentley, S.D., Frost, S.D.W. and Corander, J. (2018). RhierBAPs: An R implementation of the population clustering algorithm hierbaps. Wellcome Open Research 3. https://doi.org/10.12688/wellcomeopenres.14694.1CrossRefGoogle Scholar
Tundisi, J.G. and Matsumura-Tundisi, T. (2008). Biodiversity in the neotropics: ecological, economic and social values. Brazilian Journal of Biology 68(4 Suppl.), 913915. https://doi.org/10.1590/S1519-69842008000500002CrossRefGoogle ScholarPubMed
Urantowka, A.D., Hajduk, K. and Kosowska, B. (2013). Complete mitochondrial genome of endangered Yellow-shouldered Amazon (Amazona barbadensis): Two control region copies in parrot species of the Amazona genus. Mitochondrial DNA 24, 411413. https://doi.org/10.3109/19401736.2013.766177CrossRefGoogle ScholarPubMed
Urantoẃka, A.D., Mackiewicz, P. and Strzaał, T. (2014). Phylogeny of Amazona barbadensis and the Yellow-Headed Amazon complex (Aves: Psittacidae): A new look at South American parrot evolution. PLOS ONE 9, e97228. https://doi.org/10.1371/journal.pone.0097228CrossRefGoogle Scholar
Vergara-Tabares, D.L., Cordier, J.M., Landi, M.A., Olah, G. and Nori, J. (2020). Global trends of habitat destruction and consequences for parrot conservation. Global Change Biology 26, 42514262. https://doi.org/10.1111/GCB.15135CrossRefGoogle ScholarPubMed
Victorino, A. (2012). Bosques para las Personas. Memorias del Año internacional de los Bosques, 2011. Bogotá: Instituto de Investigación de Recurso Biológicos Alexander von Humboldt y Ministerio de Ambiente y Desarrollo Sostenible.Google Scholar
Wenner, T.J., Russello, M.A. and Wright, T.F. (2012). Cryptic species in a Neotropical parrot: genetic variation within the Amazona farinosa species complex and its conservation implications. Conservation Genetics 13, 14271432. https://doi.org/10.1007/S10592-012-0364-8CrossRefGoogle Scholar
Young, A.M., Hobson, E.A., Lackey, L.B. and Wright, T.F. (2012). Survival on the ark: life-history trends in captive parrots. Animal Conservation 15, 2843. https://doi.org/10.1111/j.1469-1795.2011.00477.xCrossRefGoogle ScholarPubMed
Supplementary material: File

Arias-Sosa et al. supplementary material

Arias-Sosa et al. supplementary material
Download Arias-Sosa et al. supplementary material(File)
File 478.9 KB