Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T16:47:30.281Z Has data issue: false hasContentIssue false

Preparing captive-bred birds for reintroduction: the case of the Vietnam Pheasant Lophura edwardsi

Published online by Cambridge University Press:  13 February 2020

N. J. COLLAR*
Affiliation:
BirdLife International, David Attenborough Building, Pembroke Street, CambridgeCB2 3QZ, UK. Email: [email protected]

Summary

The Vietnam Pheasant Lophura edwardsi (including L. hatinhensis) is only known from a small area of central Vietnam, where it occurred in wet forest below 300 m. It is probably extinct in the wild, but some 1,500 birds, derived from 28 individuals caught in 1924–1930, survive in captivity. Guidelines for reintroducing galliforms date from 2009. Subsequent literature was reviewed for new research findings to help maximise the chances of success in reintroducing birds. Studies confirmed that non-parent-reared captive-bred galliforms survive poorly, primarily owing to inadequate anti-predator responses. These reflect both genetic and ontogenetic unsuitability to wild conditions, with progressive maladaptation of stock being related to the number of generations spent in captivity (at least 35 in the case of Vietnam Pheasant). To compensate as far as possible for this deficiency, a reintroduction programme should use: environmental enrichment (including the provision of perches in aviaries), dietary enrichment (especially involving practice with live food), parent-rearing over several generations (although how many are needed for a species almost a century in captivity is unknown), soft releases (allowing full familiarisation with the future environment over at least 50 days), rigorous anti-predator training (against both air and ground attacks), anti-predation release stratagems (relocating and deterring predators, releasing birds at several stations, offering post-release support), determining appropriate numbers (per batch, with at least 300 in total per site) and time-frame for release (around five years) and the selection of fully suitable releasees in (as far as possible) naturally formed social groups, including parent-guided offspring aged around four months. Six sites need survey for extant populations or use for reintroduction, and the choice of reintroduction site will depend primarily on habitat extent and condition. The costs of these measures will be high and the overall project schedule will need to extend beyond the overall five years currently planned.

Type
Review Article
Copyright
© BirdLife International, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnvall, B., Bélteky, J. and Jensen, P. (2017) Brain size is reduced by selection for tameness in Red Junglefowl—correlated effects in vital organs. Sci. Reports 7: 3306.Google ScholarPubMed
Angulo, P., F. (2006) Influencia del manejo en cautiverio de la Pava Aliblanca (Penelope albipennis) para su reintroducción. Pp.1316 in Memorias del Sexto Congreso Internacional sobre Manejo de Fauna Silvestre en la Amazonia y Latinoamérica (5-10 Sept. 2004), Iquitos, Loreto, Perú. Iquitos, Peru (no publisher).Google Scholar
Angulo, P. F. (2008) Current status and conservation of wild and reintroduced White-winged Guan (Penelope albipennis) populations. Orn . Neotrop. 19 (Suppl.): 279286.Google Scholar
Angulo, P. F. (2011) Re-introduction of the White-winged Guan in Lambayeque, Perú. Pp.141145 in Soorae, P. S., ed. Global re-introduction perspectives, 2011: more case studies from around the globe. Gland, Switzerland: IUCN/SSC Re-introduction Specialist Group, and Abu Dhabi, UAE: Environment Agency–Abu Dhabi.Google Scholar
Armstrong, D. P. and Wittmer, H. U. (2011) Incorporating Allee effects into reintroduction strategies. Ecol. Res. 26: 687695.CrossRefGoogle Scholar
Bernardo, C. S. S., Lloyd, H., Bayly, N. and Galetti, M. (2011) Modelling post-release survival of reintroduced Red-billed Curassows Crax blumenbachii. Ibis 153: 562572.CrossRefGoogle Scholar
Bernardo, C. S. S., Olmos, F., Desbiez, A. L. J. and Collar, N. J. (2014) Reintroducing the Red-billed Curassow in Brazil: population viability analysis points to potential success. Natureza e Conservação 12: 5358.CrossRefGoogle Scholar
BirdLife International (2019) IUCN Red List for birds. Downloaded from http://www.birdlife.org on 08/07/2019.Google Scholar
Bremner-Harrison, S., Prodohl, P. A. and Elwood, R. W. (2004) Behavioural trait assessment as a release criterion: boldness predicts early death in a reintroduction programme of captive-bred swift fox (Vulpes velox). Anim. Conserv. 7: 313320.CrossRefGoogle Scholar
Buner, F. and Schaub, M. (2008) How do different releasing techniques affect the survival of reintroduced grey partridges Perdix perdix? Wildl. Biol. 14: 2635.CrossRefGoogle Scholar
Buner, F. D., Browne, S. J. and Aebischer, N. J. (2011) Experimental assessment of release methods for the re-establishment of a red-listed galliform, the grey partridge (Perdix perdix). Biol. Conserv. 144: 593601.CrossRefGoogle Scholar
Canessa, S., Hunter, D., McFadden, M., Marantelli, G. and McCarthy, M. A. (2014) Optimal release strategies for cost-effective reintroductions. J. Appl. Ecol. 51: 11071115.CrossRefGoogle Scholar
Carpenter, J. W., Gabel, R. R. and Goodwin, J. G. (1991) Captive breeding and reintroduction of the endangered Masked Bobwhite. Zoo Biology 10: 439449.CrossRefGoogle Scholar
Carter, A. S. (2015) Fate of captive-reared Bobwhite Quail released in central Kentucky. B.Sc. thesis, Eastern Kentucky University, Richmond, KY, USA.Google Scholar
Collar, N. J., Andreev, A. V., Chan, S., Crosby, M. J., Subramanya, S. and Tobias, J. A. (2001) Threatened birds of Asia: The BirdLife International Red Data Book. (Third edition, part 3). Cambridge, UK: BirdLife International.Google Scholar
Condon, T., Brisbin, I. L. and Chandler, C. R. (2019) Red Junglefowl introductions in the southeastern United States: history and research legacy. Southeastern Naturalist 18: 3752.CrossRefGoogle Scholar
Davison, G. W. H. (1981) Habitat requirements and the food supply of the Crested Fireback. World Pheasant Association J. 6: 4052.Google Scholar
Dickens, M. J., Delehanty, D. J. and Romero, L. M. (2010) Stress: an inevitable component of animal translocation. Biol. Conserv. 143: 13291341.CrossRefGoogle Scholar
Dolman, P. M., Collar, N. J. and Burnside, R. J. (2018) Captive breeding cannot sustain migratory Asian houbara Chlamydotis macqueenii without hunting controls. Biol. Conserv. 228: 357366.CrossRefGoogle Scholar
Dowell, S. D. (1992) Problems and pitfalls of gamebird reintroduction and restocking: an overview. Gibier Faune Sauvage 9: 773780.Google Scholar
Eames, J. C. and Mahood, S. P. (2017) Is Edwards’s Pheasant Lophura edwardsi extinct in the wild? Forktail 33: 2733.Google Scholar
Eitniear, J. (2010) Returning the Montezuma Quail to the eastern Edwards Plateau. Texas Birds Annual 10: 2831.Google Scholar
Ewen, J. G., Armstrong, D. P., Parker, K. A. and Seddon, P. J. (2012) Reintroduction biology: integrating science and management. Chichester, UK: Wiley-Blackwell.CrossRefGoogle Scholar
Faria, P. J., van Oosterhuit, C. and Cable, J. (2010) Optimal release strategies for captive-bred animals in reintroduction programs: experimental infections using the guppy as a model organism. Biol. Conserv. 143: 3541.CrossRefGoogle Scholar
Gall, S. A., Kuvlesky, W. P. and Gee, G. (2000) Releasing captive-reared masked bobwhites for population recovery: a review. Pp. 147152 in Brennan, L. A., Palmer, W. E., Burger, L. W. and Pruden, T. L., eds. Quail IV: Proceedings of the Fourth National Quail Symposium. Tallahassee, FL: Tall Timbers Research Station.Google Scholar
Garson, P. J., Young, L. and Kaul, R. (1992) Ecology and conservation of the Cheer Pheasant Catreus wallichii: studies in the wild and the progress of a reintroduction project. Biol. Conserv. 59: 2535.CrossRefGoogle Scholar
Garvey, P. M., Glen, A. S. and Pech, R. P. (2016) Dominant predator odour triggers caution and eavesdropping behaviour in a mammalian mesopredator. Behav. Ecol. Sociobiol. 70: 481492.CrossRefGoogle Scholar
Gaudioso, V. R., Sánchez-García, C., Pérez, J. A., Rodríguez, P. L., Armenteros, J. A. and Alonso, M. E. (2011a) Does early antipredator training increase the suitability of captive red-legged partridges (Alectoris rufa) for releasing? Poultry Science 90: 19001908.CrossRefGoogle Scholar
Gaudioso, V. R., Pérez, J. A., Sánchez-García, C., Armenteros, J. A., Lomillos, J. M. and Alonso, M. E. (2011b) Isolation from predators: a key factor in the failed release of farmed red-legged partridges (Alectoris rufa) to the wild? British Poultry Sci. 52: 155162.CrossRefGoogle Scholar
Gortázar, C., Villafuerte, R. and Martín, M. (2000) Success of traditional restocking of Red-legged Partridge for hunting purposes in areas of low density of northeast Spain Aragón. Z. Jagdwiss. 46: 2330.Google Scholar
Grainger, M. J., Ngoprasert, D., McGowan, P. J. K. and Savinni, T. (2017) Informing decisions on an extremely data poor species facing imminent extinction. Oryx doi:10.1017/S0030605317000813.Google Scholar
Gray, T. N. E., Lynam, A. J., Teak Seng, Laurance, F, W.., Long, B., Scotson, L. and Ripple, W. J. (2017) Wildlife-snaring crisis in Asian forests. Science 355 (6322): 255256.CrossRefGoogle ScholarPubMed
Griffin, A. S., Blumstein, D. T. and Evans, C. S. (2000) Training captive-bred or translocated animals to avoid predators. Conserv. Biol. 14: 13171326.CrossRefGoogle Scholar
Grimm, V. and Storch, I. (2000) Minimum viable population size of capercaillie Tetrao urogallus: results from a stochastic model. Wildl. Biol. 6: 219225.CrossRefGoogle Scholar
Gruychev, G. (2014) Radiotelemetric tracking of farm pheasant (Phasianus colchicus) released in the Pazardzhik region, Bulgaria. Acta Zool. Bulgarica 66: 425429.Google Scholar
Hennache, A. (2001) Husbandry guidelines – Lophura edwardsi. Clerès, France: Parc Zoologique de Clères.Google Scholar
Hennache, A. and Ottaviani, M (2005) Monographie des faisans, 1. Clères, France: Edition WPA France.Google Scholar
Hennache, A., Randi, E. and Lucchini, V. (1999) Genetic diversity, phylogenetic relationships and conservation of Edwards’s Pheasant Lophura edwardsi. Bird Conserv. Internatn. 9: 395410.Google Scholar
Hennache, A., Mahood, S. P., Eames, J. C. and Randi, E. (2012) Lophura hatinhensis is an invalid taxon. Forktail 28: 129135.Google Scholar
Hill, D. and Robertson, P. (1988) Breeding success of wild and hand-reared Ring-necked Pheasants. J. Wildl. Mgmt. 52: 446450.CrossRefGoogle Scholar
Homberger, B. (2014) The effects of prenatal and postnatal contexts on physiology, behaviour and survival of reintroduced Grey Partridges (Perdix perdix). Dr. sc. nat. dissertation, Mathematisch-naturwissenschaftlichen Fakultät, Universität Zürich.Google Scholar
Homberger, B., Jenni-Eiermann, S., Roulin, A. and Jenni, L. (2013) The impact of pre- and post-natal contexts on immunity, glucocorticoids and oxidative stress resistance in wild and domesticated grey partridges. Functional Ecol. 27: 10421054.CrossRefGoogle Scholar
Homberger, B., Jenni, J., Duplain, J., Lanz, M. and Schaub, M. (2014) Food unpredictability in early life increases survival of captive grey partridges (Perdix perdix) after release into the wild. Biol. Conserv. 177: 134141.CrossRefGoogle Scholar
Hughes, T. W. and Lee, K. (2015) The role of recreational hunting in the recovery and conservation of the wild turkey (Meleagris gallopavo spp.) in North America. International J. Env. Studies 72: 797809.CrossRefGoogle Scholar
IUCN (1998) Guidelines for re-introductions. Gland, Switzerland, and Cambridge, UK: IUCN.Google Scholar
IUCN/SSC (2013) Guidelines for reintroductions and other conservation translocations, version 1.0. Gland, Switzerland: IUCN Species Survival Commission.Google Scholar
Kapic, T., Rahde, T., Pinceel, L., Jacken, H., Roels, I., Ahn, Pham Tuan, Corder, J., Leus, K. and van Lint, W. (in prep.) Long-term management plan for the Edwards’s Pheasant (Lophura edwardsi) global ex situ programme. Amsterdam: European Association of Zoos and Aquaria.Google Scholar
Keiter, D. A. and Ruzicka, R. E. (2017) Predator visits to acclimatization pens: implications for the soft-release of gallinaceous birds. Oryx https://doi.org/10.1017/S003060531700103XGoogle Scholar
Leopold, A. S. (1944) The nature of heritable wildness in turkeys. Condor 46: 133197.CrossRefGoogle Scholar
Liu, B, Li, L., Lloyd, H., Xia, C., Zhang, Y. and Zheng, G. (2016) Comparing post‑release survival and habitat use by captive‑bred Cabot’s Tragopan (Tragopan caboti) in an experimental test of soft‑release reintroduction strategies. Avian Res. 7: 19.CrossRefGoogle Scholar
Lockwood, M. A., Griffin, C. P., Morrow, M. E., Randel, C. J. and Silvy, N. J. (2005) Survival, movements, and reproduction of released captive-reared Attwater’s Prairie Chicken. J. Wildl. Mgmt. 69: 12511258.CrossRefGoogle Scholar
Marshall, K. and Edwards-Jones, G. (1998) Reintroducing capercaillie (Tetrao urogallus) into southern Scotland: identification of minimum viable populations at potential release sites. Biodivers. and Conserv. 7: 275296.CrossRefGoogle Scholar
McGowan, P. J. K., Traylor-Holzer, K. and Leus, K. (2017) IUCN guidelines for determining when and how ex situ management should be used in species conservation. Conserv. Lett. 10: 361366.CrossRefGoogle Scholar
McLean, I. G., Hölzer, G. and Studholme, B. J. S. (1999) Teaching predator-recognition to a naive bird: implications for management. Biol. Conserv. 87: 123130.CrossRefGoogle Scholar
McPhee, M. E. (2003) Generations in captivity increases behavioral variance: considerations for captive breeding and reintroduction programs. Biol. Conserv. 115: 7177.CrossRefGoogle Scholar
McPhee, M. E. and Silverman, E. D. (2004) Increased behavioral variation and the calculation of release numbers for reintroduction programs. Conserv. Biol. 18: 705715.CrossRefGoogle Scholar
McPhee, M. E. and McPhee, N. F. (2012) Relaxed selection and environmental change decrease reintroduction success in simulated populations. Anim. Conserv. 15: 274282.CrossRefGoogle Scholar
Merta, D., Kobielski, J., Krzywiński, A., Theuerkauf, J. and Gula, R. (2015) A new mother-assisted rearing and release technique (“born to be free”) reduces the exploratory movements and increases survival of young capercaillies. Eur. J. Wildl. Res. 61: 299302.CrossRefGoogle Scholar
Mihaylov, H., Gruychev, G. and Stoyanov, S. (2014) Survival of spring released, hand reared Common Pheasants (Phasianus colchicus colchicus L. 1758) and Chukar Partridges (Alectoris chukar J. E. Gray, 1830) in natural habitats in Bulgaria. Balkan J . Wildl. Res. 1: 5561.Google Scholar
Milligan, M. C., Wells, S. L. and McNew, L. B. (2018) A population viability analysis for Sharp-tailed Grouse to inform reintroductions. J. Fish and Wildl. Mgmt. 9: 565581.CrossRefGoogle Scholar
Moore, S. J. and Battley, P. F. (2006) Differences in the digestive organ morphology of captive and wild Brown Teal Anas chlorotis and implications for releases. Bird Conserv. Internatn. 16: 253264.CrossRefGoogle Scholar
Murray, P. J., Burns, A. C. and Davy, J. R. (2006) Development of an animal repellent—selection, efficacy and presentation. Australian J. Exper. Agriculture 46: 851856.CrossRefGoogle Scholar
Musil, D. D. and Connelly, J. W. (2009) Survival and reproduction of pen-reared vs translocated wild pheasants Phasianus colchicus. Wildl. Biol. 15: 8088.CrossRefGoogle Scholar
Nicol, C. J. (2015) The behavioural biology of chickens. Wallingford, UK: CABI.CrossRefGoogle Scholar
Parish, D. M. B. and Sotherton, N. W. (2007) The fate of released captive-reared grey partridges Perdix perdix: implications for reintroduction programmes. Wildl. Biol. 13: 140149.CrossRefGoogle Scholar
Pérez, J. A., Sánchez-García, C., Díez, C., Bartolomé, D. J., Alonso, M. E. and Gaudioso, V. R. (2015) Are parent-reared red-legged partridges (Alectoris rufa) better candidates for re-establishment purposes? Poultry Science 94: 23302338.CrossRefGoogle ScholarPubMed
Pham, T. A. and Le, T. T. (2015) Action Plan for the Conservation of the Edwards’s Pheasant Lophura edwardsi for the period 2015–2020 with vision to 2030. Hanoi: Viet Nature Conservation Centre.Google Scholar
Pielowski, Z. (1981) Weitere Untersuchungen ueber den Wert des Zuchtmaterials von Fasanen zum Aussetzen. Z. Jagdwiss. 27: 102109.Google Scholar
Pinceel, L. (2015) Saving the Edwards’s pheasant: genetic assessment of the global captive population. G@llinformed 10: 1213.Google Scholar
Priddel, D. and Wheeler, R. (1994) Mortality of captive-raised malleefowl, Leipoa ocellata, released into a mallee remnant within the wheat-belt of New South Wales. Wildlife Res. 21: 543551.CrossRefGoogle Scholar
Putaala, A. and Hissa, R. (1998) Breeding dispersal and demography of wild and hand-reared grey partridges Perdix perdix in Finland. Wildl. Biol. 4: 137145.CrossRefGoogle Scholar
Rantanen, E. M., Buner, F., Riordan, P., Sotherton, N. and Macdonald, D. W. (2010) Habitat preferences and survival in wildlife reintroductions: an ecological trap in reintroduced grey partridges. J. Appl. Ecol. 47: 13571364.CrossRefGoogle Scholar
Reading, R. P., Miller, B. and Shepherdson, D. (2013) The value of enrichment to reintroduction success. Zoo Biology 32: 332341.CrossRefGoogle ScholarPubMed
Ridley, M. W. (1986) Captive breeding and reintroduction of pheasants. Internatn. Zoo Yearbook 24/25: 4044.CrossRefGoogle Scholar
Roberts, L. J., Taylor, J. and Garcia de Leaniz, C. (2011) Environmental enrichment reduces maladaptive risk-taking behavior in salmon reared for conservation. Biol. Conserv. 144: 19721979.CrossRefGoogle Scholar
Robertson, P. A. (1988) Survival of released pheasants, Phasianus colchicus, in Ireland. J. Zool. 214: 683695.CrossRefGoogle Scholar
Runge, M. C. (2013) Active adaptive management for reintroduction of an animal population. J. Wildl. Mgmt. 77: 11351144.CrossRefGoogle Scholar
Rymešová, D, Tomášek, O. and Šálek, M. (2013) Differences in mortality rates, dispersal distances and breeding success of commercially reared and wild grey partridges in the Czech agricultural landscape. Eur. J. Wildl. Res. 59: 147158.CrossRefGoogle Scholar
Sanchez-Donoso, I., Rodríguez-Teijeiro, J. D., Quintanilla, I., Jiménez-Blasco, I., Sardà-Palomera, F., Nadal, J., Puigcerver, M. and Vilà, C. (2014) Influence of game restocking on the migratory behaviour of the common quail, Coturnix coturnix. Evolutionary Ecology Res. 16: 493504.Google Scholar
Sánchez-García, C., Alonso, M. E., Pérez, J. A., Rodríguez, P. L. and Gaudioso, V. R. (2011) Comparing fostering success between wild-caught and game farm bred captive red-legged partridges (Alectoris rufa, L.). Appl. Anim. Behav. Sci. 133: 7077.CrossRefGoogle Scholar
Santilli, F., Galardi, L. and Bagliacca, M. (2012) First evaluation of different captive rearing techniques for the re-establishment of the red legged partridge populations. Avian Biol. Res. 5(3): 147153.CrossRefGoogle Scholar
Seiler, C., Angelstam, P. and Bergmann, H.-H. (2000) Conservation releases of captive-reared grouse in Europe: what do we know and what do we need? Cahiers d’Ethologie 20: 235252.Google Scholar
Sokos, C. K., Birtsas, P. K. and Tsachalidis, E. P. (2008) The aims of galliforms release and choice of techniques. Wildl. Biol. 14: 412422.CrossRefGoogle Scholar
Stinson, D. W. and Schroeder, M. A. (2012) Columbian Sharp-tailed Grouse recovery plan. Olympia: Washington Department of Fish and Wildlife.Google Scholar
Suwanrat, J., Ngoprasert, D., Sukumal, N., Suwanwaree, P. and Savini, T. (2014) Reproductive ecology and nest-site selection of Siamese fireback in lowland forest. Raffles Bull. Zool. 62: 581590.Google Scholar
Teixeira, C. P., Azevedo, C. S., Mendl, M., Cipreste, C. F. and Young, R. J. (2007) Revisiting translocation and reintroduction programmes: the importance of considering stress. Anim. Behav. 73: 113.CrossRefGoogle Scholar
Thewlis, R. M., Timmins, R. J., Evans, T. D. and Duckworth, J. W. (1998) The conservation status of birds in Lao PDR. Bird Conserv. Internatn. 8: 1159.CrossRefGoogle Scholar
Tian, S., Xu, J., Li, J., Zhang, Z. and Yang, Y. (2018) Research advances of Galliformes since 1990 and future prospects. Avian Res. 9, 32.CrossRefGoogle Scholar
Tracy, L. N., Wallis, G. P., Efford, M. G. and Jamieson, I. G. (2011) Preserving genetic diversity in threatened species reintroductions: how many individuals should be released? Anim. Conserv. 14: 439-446.CrossRefGoogle Scholar
Whiteside, M. A., Sage, R. and Madden, J. R. (2015) Diet complexity in early life affects survival in released pheasants by altering foraging efficiency, food choice, handling skills and gut morphology. J. Anim. Ecol. 84: 14801489.CrossRefGoogle ScholarPubMed
Whiteside, M. A., Sage, R. and Madden, J. R. (2016) Multiple behavioural, morphological and cognitive developmental changes arise from a single alteration to early life spatial environment, resulting in fitness consequences for released pheasants. R. Soc. Open Sci. 3: 160008.CrossRefGoogle ScholarPubMed
Widayati, A. and Carlisle, B. (2012) Impacts of rattan cane harvesting on vegetation structure and tree diversity of Conservation Forest in Buton, Indonesia. Forest Ecol. and Mgmt 266: 206215.CrossRefGoogle Scholar
Wienemann, T., Schmitt-Wagner, D., Meuser, K., Segelbacher, G., Schink, B., Brune, A. and Berthold, P. (2011) The bacterial microbiota in the ceca of Capercaillie (Tetrao urogallus) differs between wild and captive birds. Systematic and Applied Microbiology 34: 542551.CrossRefGoogle ScholarPubMed
Williams, S. E. and Hoffman, E. A. (2009) Minimizing genetic adaptation in captive breeding programs: a review. Biol. Conserv. 142: 23882400.CrossRefGoogle Scholar
Wood-Gush, D. G. M. (1958) The effect of experience on the mating behaviour of the domestic cock. Anim. Behav. 6: 6871.CrossRefGoogle Scholar
WPA (2009) Guidelines for the re-introduction of Galliformes for conservation purposes. Gland, Switzerland: IUCN, and Newcastle-upon-Tyne, UK: World Pheasant Association.Google Scholar
Zeng, L. (2014) Social behavior and cooperative breeding of Kalij Pheasants (Lophura leucomelanos) in Hawai’i. PhD dissertation, University of California Riverside.Google Scholar
Zhang, Y. and Zheng, G. (2007) A population viability analysis (PVA) for Cabot’s Tragopan (Tragopan caboti) in Wuyanling, south-east China. Bird Conserv. Internatn. 17: 151161.CrossRefGoogle Scholar