Hostname: page-component-f554764f5-246sw Total loading time: 0 Render date: 2025-04-14T19:16:26.306Z Has data issue: false hasContentIssue false

Home range and presence of the California Condor Gymnogyps californianus in a protected area in Baja California: seasonal, biological, and food supplementation influences

Published online by Cambridge University Press:  03 April 2025

Alejandra G. Ramos*
Affiliation:
Facultad de Ciencias, Universidad Autónoma de Baja California, Km. 103 Carretera Tijuana-Ensenada, Pedregal Playitas, 22860, Ensenada, Baja California, México
David Schneider
Affiliation:
Facultad de Ciencias, Universidad Autónoma de Baja California, Km. 103 Carretera Tijuana-Ensenada, Pedregal Playitas, 22860, Ensenada, Baja California, México Centro de Investigación Científica y de Educación Superior de Ensenada, Departamento de Biología de la Conservación, Carretera Tijuana-Ensenada 3918, Zona Playitas, 22860 Ensenada, Baja California, México
María Catalina Porras-Peña
Affiliation:
Parque Nacional Sierra de San Pedro Mártir, Observatorio Km. 84, 22795, Ensenada, Baja California, México
Juan Julián Vargas-Velazco
Affiliation:
Espacios Naturales y Desarrollo Sustentable, A.C.
Tamara Abigail Loredo-Arce
Affiliation:
Facultad de Ciencias, Universidad Autónoma de Baja California, Km. 103 Carretera Tijuana-Ensenada, Pedregal Playitas, 22860, Ensenada, Baja California, México
Karla Lelys Miramontes-Rios
Affiliation:
Facultad de Ciencias, Universidad Autónoma de Baja California, Km. 103 Carretera Tijuana-Ensenada, Pedregal Playitas, 22860, Ensenada, Baja California, México
*
Corresponding author: Alejandra G. Ramos; Email: [email protected]

Summary

Obligate avian scavengers, such as the “Critically Endangered” California Condor Gymnogyps californianus, face significant threats from human activities and environmental changes. This study examines the home range and presence of reintroduced California Condors in a protected area in Baja California, Mexico, focusing on the influences of seasonality, biological factors, and food supplementation. Using spatial data collected over 12 months with telemetry equipment, we analysed condor movements within and beyond the boundaries of the Parque Nacional Sierra de San Pedro Mártir. Our findings reveal that condors spend over half their time within the protected area, with an increased presence during winter months. Supplementary feeding programmes significantly increased condor presence within the park, particularly in spring and summer. Home range analyses showed that season significantly influenced home range sizes, with smaller ranges observed during winter compared with other seasons. Additionally, male condors had larger home ranges than females during spring, but no significant sex differences were observed in other seasons. Age did not have a significant effect on home range size. This study emphasises the importance of protected areas and supplementary feeding programmes in condor conservation, highlighting the necessity of continuous monitoring and management to help support this iconic species.

Resumen

Resumen

Los carroñeros aviares obligados, como el críticamente amenazado cóndor de California Gymnogyps californianus, enfrentan amenazas significativas por actividades humanas y cambios ambientales. Este estudio examina el ámbito hogareño y la presencia de cóndores de California reintroducidos en un área protegida en Baja California, México, enfocándose en las influencias de la estacionalidad, factores biológicos y suplementación alimenticia. Utilizando datos espaciales recopilados durante 12 meses con equipos de telemetría, analizamos los movimientos de los cóndores dentro y más allá de los límites del Parque Nacional Sierra de San Pedro Mártir. Nuestros resultados revelan que los cóndores pasan más de la mitad de su tiempo dentro del área protegida, con una presencia incrementada durante los meses de invierno. Los programas de alimentación suplementaria aumentaron significativamente la presencia de cóndores dentro del parque, particularmente en primavera y verano. Los análisis del ámbito hogareño mostraron que la temporada influye significativamente en los tamaños del ámbito hogareño, observándose ámbitos hogareños más pequeños durante el invierno en comparación con otras estaciones. Además, los cóndores machos tenían ámbitos hogareños más grandes que las hembras durante la primavera, pero no se observaron diferencias significativas entre sexos en otras estaciones. La edad no tuvo un efecto significativo en el tamaño del ámbito hogareño. Este estudio enfatiza la importancia de las áreas protegidas y los programas de alimentación suplementaria en la conservación del cóndor, destacando la necesidad de un monitoreo y manejo continuos para ayudar a preservar esta especie icónica.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alarcón, P.A.E. and Lambertucci, S.A. (2018). A three-decade review of telemetry studies on vultures and condors. Movement Ecology 6, 13.Google ScholarPubMed
Apolloni, N., Grüebler, M.U., Arlettaz, R., Gottschalk, T.K. and Naef-Daenzer, B. (2018). Habitat selection and range use of little owls in relation to habitat patterns at three spatial scales. Animal Conservation 21, 6575.Google Scholar
Bakker, V.J., Finkelstein, M.E., Doak, D.F., Kirkland, S., Brandt, J., Welch, A. et al. (2024). Practical models to guide the transition of California condors from a conservation-reliant to a self-sustaining species. Biological Conservation 291, 110447.Google Scholar
Bakker, V.J., Smith, D.R., Copeland, H. and Finkelstein, M.E. (2017). Effects of lead exposure, flock behavior, and management actions on the survival of California Condors (Gymnogyps californianus). EcoHealth 14, 92105.Google ScholarPubMed
Bartón, K. (2024). MuMIn: Multi-Model Inference. R package version 1.48.4. Available at https://CRAN.R-project.org/package=MuMIn.Google Scholar
Bates, D., Maechler, M., Bolker, B. and Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 148. https://doi.org/10.18637/jss.v067.i01CrossRefGoogle Scholar
BirdLife International. (2024). Species Factsheet: California Condor Gymnogyps californianus. Available at https://datazone.birdlife.org/species/factsheet/california-condor-gymnogyps-californianus.Google Scholar
Bojórquez-Tapia, L.A., De La Cueva, H., Díaz, S., Melgarejo, D., Alcantar, G., Solares, M.J. et al. (2004). Environmental conflicts and nature reserves: redesigning Sierra San Pedro Mártir National Park, Mexico. Biological Conservation 117, 111126.Google Scholar
Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A. et al. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9, 378400. https://doi.org/10.32614/RJ-2017-066Google Scholar
Buechley, E.R., Girardello, M., Santangeli, A., Daka Ruffo, A., Ayalew, G., Abebe, Y.D. et al. (2022). Priority areas for vulture conservation in the Horn of Africa largely fall outside the protected area network. Bird Conservation International 32, 188205.CrossRefGoogle Scholar
Buechley, E.R. and Şekercioğlu, Ç.H. (2016). The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biological Conservation 198, 220228.Google Scholar
Calenge, C. and Fortmann-Roe, S. (2023). adehabitatHR: Home Range Estimation. R package version 0.4.21. Available at https://CRAN.R-project.org/package=adehabitatHR.Google Scholar
Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P. et al. (2012). Biodiversity loss and its impact on humanity. Nature 486, 5967.CrossRefGoogle ScholarPubMed
Carrete, M., Donázar, J.A., Donázar, D. and Margalida, A. (2006). Density-dependent productivity depression in Pyrenean Bearded Vultures: implications for conservation. Ecological Applications 16, 16741682. https://doi.org/10.1890/1051-0761(2006)016(1674:dpdipb)2.0.co;2Google ScholarPubMed
Cerecedo-Iglesias, C., Bartumeus, F., Cortés-Avizanda, A., Pretus, J.L., Hernández-Matías, A. and Real, J. (2023). Resource predictability modulates spatial-use networks in an endangered scavenger species. Movement Ecology 11, 22. https://doi.org/10.1186/s40462-023-00383-4CrossRefGoogle Scholar
Collar, N.J., Baral, H.S., Batbayar, N., Bhardwaj, G.S., Brahma, N., Burnside, R.J. et al. (2017). Averting the extinction of bustards in Asia. Forktail 33, 126.Google Scholar
Comisión Nacional de Áreas Naturales Protegidas (CONANP) (2009). Programa de Conservación y Manejo del Parque Nacional Sierra de San Pedro Mártir. Available at https://simec.conanp.gob.mx/ficha.php?anp=119&reg=1.Google Scholar
Cortés-Avizanda, A., Blanco, G., Devault, T.L., Markandya, A., Virani, M.Z., Brandt, J. et al. (2016). Supplementary feeding and endangered avian scavengers: benefits, caveats, and controversies. Frontiers in Ecology and the Environment 14, 191199.Google Scholar
DeVault, T., Reinhart, B., Brisbin, I. Jr and Rhodes, O. Jr (2004). Home ranges of sympatric black and turkey vultures in South Carolina. The Condor 106, 706711.CrossRefGoogle Scholar
Dirzo, R., Ceballos, G. and Ehrlich, P.R. (2022). Circling the drain: the extinction crisis and the future of humanity. Philosophical Transactions of the Royal Society B Biological Sciences 377, 20210378.CrossRefGoogle ScholarPubMed
Donázar, J.A., Margalida, A., Carrete, M. and Sánchez-Zapata, J.A. (2009). Too sanitary for vultures. Science 326, 664. https://doi.org/10.1126/science.326_664aCrossRefGoogle ScholarPubMed
Duckworth, G.D. and Altwegg, R. (2018). Effectiveness of protected areas for bird conservation depends on guild. Diversity and Distributions 24, 10831091.CrossRefGoogle ScholarPubMed
Dunbar-Irwin, M. and Safford, H. (2016). Climatic and structural comparison of yellow pine and mixed-conifer forests in northern Baja California (México) and the eastern Sierra Nevada (California, USA). Forest Ecology and Management 363, 252266.CrossRefGoogle Scholar
Ferreira, G., Thomas, L., Ingram, D., Bevan, P., Madsen, E., Thanet, D. et al. (2023). Wildlife response to management regime and habitat loss in the Terai Arc Landscape of Nepal. Biological Conservation 288, 110334.Google Scholar
Finkelstein, M.E., Doak, D.F., George, D., Burnett, J., Brandt, J., Church, M. et al. (2012). Lead poisoning and the deceptive recovery of the critically endangered California condor. Proceedings of the National Academy of Sciences – PNAS 109, 1144911454.CrossRefGoogle ScholarPubMed
Finkelstein, M.E., Kuspa, Z.E., Welch, A., Eng, C., Clark, M., Burnett, J. et al. (2014). Linking cases of illegal shootings of the endangered California condor using stable lead isotope analysis. Environmental Research 134, 270279.Google ScholarPubMed
Fleming, C.H. and Calabrese, J.M. (2023). ctmm: Continuous-Time Movement Modeling. R package version 1.2.0. Available at https://CRAN.R-project.org/package=ctmm.Google Scholar
Garvin, J.C., Slabe, V.A. and Cuadros Díaz, S.F. (2020). Conservation Letter: Lead poisoning of raptors. Journal of Raptor Research 54, 473479.CrossRefGoogle Scholar
Goldingay, R.L. (2021). General or local habitat preferences? Unravelling geographically consistent patterns of habitat preference in gliding mammals. Forest Ecology and Management 491, 119204.CrossRefGoogle Scholar
Guido, J.M., Cecchetto, N.R., Plaza, P.I., Donázar, J.A. and Lambertucci, S.A. (2023). The influence of age, sex and season on Andean condor ranging behavior during the immature stage. Animals 13, 71234. https://doi.org/10.3390/ani13071234CrossRefGoogle ScholarPubMed
Hall, J.C., Hong, I., Poessel, S.A., Braham, M., Brandt, J., Burnett, J. et al. (2021). Seasonal and age-related variation in daily travel distances of California condors. Journal of Raptor Research 55, 388398.Google Scholar
Hall, M., Grantham, J., Posey, R. and Mee, A. (2007). Lead exposure among reintroduced California condors in southern California. In Mee, A. and hall, L.S. (eds), California Condors in the 21st Century. Washington: American Ornithologists Union/Nuttall Ornithological Club, pp. 139162.Google Scholar
Herring, G., Eagles-Smith, C.A., Wolstenholme, R., Welch, A., West, C. and Rattner, B.A. (2022). Collateral damage: Anticoagulant rodenticides pose threats to California condors. Environmental Pollution 311, 119925.CrossRefGoogle ScholarPubMed
Hill, J.E., Devault, T.L., Beasley, J.C., Rhodes, O.E. and Belant, J.L. (2018). Effects of vulture exclusion on carrion consumption by facultative scavengers. Ecology and Evolution 8, 25182526.Google ScholarPubMed
Ives, A.M., Brenn-White, M., Buckley, J.Y., Kendall, C.J., Wilton, S. and Deem, S.L. (2022). A global review of causes of morbidity and mortality in free-living vultures. EcoHealth 19, 4054.CrossRefGoogle ScholarPubMed
Kane, A., Monadjem, A., Aschenborn, H., Bildstein, K., Botha, A., Bracebridge, C. et al. (2022). Understanding continent-wide variation in vulture ranging behavior to assess feasibility of Vulture Safe Zones in Africa: challenges and possibilities. Biological Conservation 268, 109516.Google Scholar
Kelly, T.R., Grantham, J., George, D., Welch, A., Brandt, J., Burnett, L.J. et al. (2014). Spatiotemporal patterns and risk factors for lead exposure in endangered California condors during 15 years of reintroduction. Conservation Biology 28, 17211730.CrossRefGoogle ScholarPubMed
Kelly, T.R., Rideout, B.A., Grantham, J., Brandt, J., Burnett, L.J., Sorenson, K.J. et al. (2015). Two decades of cumulative impacts to survivorship of endangered California condors in California. Biological Conservation 191, 391399.CrossRefGoogle Scholar
Lambertucci, S.A., Trejo, A., Di Martino, S., Sánchez-Zapata, J.A., Donázar, J.A. and Hiraldo, F. (2009). Spatial and temporal patterns in the diet of the Andean condor: ecological replacement of native fauna by exotic species. Animal Conservation 12, 338345.CrossRefGoogle Scholar
Margalida, A., Colomer, M.À. and Oro, D. (2014). Man-induced activities modify demographic parameters in a long-lived species: effects of poisoning and health policies. Ecological Applications 24, 436444.Google Scholar
Margalida, A., Donázar, J.A., Carrete, M. and Sánchez-Zapata, J.A. (2010). Sanitary versus environmental policies: fitting together two pieces of the puzzle of European vulture conservation. Journal of Applied Ecology 47, 931935. https://doi.org/10.1111/J.1365-2664.2010.01835.xCrossRefGoogle Scholar
Margalida, A., Pérez-García, J.M., Afonso, I. and Moreno-Opo, R. (2016). Spatial and temporal movements in Pyrenean bearded vultures (Gypaetus barbatus): Integrating movement ecology into conservation practice. Scientific Reports 6, 35746. https://doi.org/10.1038/srep35746Google ScholarPubMed
Martínez, J.E., Pagán, I., Palazón, J.A. and Calvo, J.F. (2007). Habitat use of booted eagles (Hieraaetus pennatus) in a Special Protection Area: implications for conservation. Biodiversity and Conservation 16, 34813488.CrossRefGoogle Scholar
Massara, R.L., Maria de Oliveira Paschoal, A., Bailey, L.L., Doherty, P.F. Jr, Hirsch, A. and Chiarello, A.G. (2018). Factors influencing ocelot occupancy in Brazilian Atlantic Forest reserves. Biotropica 50, 125134.Google Scholar
Mayor, S.J., Schneider, D.C., Schaefer, J.A. and Mahoney, S.P. (2009). Habitat selection at multiple scales. Écoscience 16, 238247.CrossRefGoogle Scholar
McClure, C.J.W., Westrip, J.R.S., Johnson, J.A., Schulwitz, S.E., Virani, M.Z., Davies, R. et al. (2018). State of the world’s raptors: Distributions, threats, and conservation recommendations. Biological Conservation 227, 390402. https://doi.org/10.1016/j.biocon.2018.08.012Google Scholar
Minnich, R.A., Barbour, M.G., Burk, J.H. and Sosa-Ramírez, J. (2000). Californian mixed-conifer forests under unmanaged fire regimes in the Sierra San Pedro Mártir, Baja California, Mexico. Journal of Biogeography 27, 105129.Google Scholar
Minnich, R.A., Franco-Vizcaíno, E., Sosa-Ramirez, J., Burk, J.H., Barry, W.J., Barbour, M.G. et al. (1997). A land above: protecting Baja California’s Sierra San Pedro Mártir within a biosphere reserve. Journal of the Southwest 39, 613695.Google Scholar
Morant, J., Arrondo, E., Sánchez-Zapata, J.A., Donázar, J.A., Cortés-Avizanda, A., De La Riva, M. et al. (2023). Large-scale movement patterns in a social vulture are influenced by seasonality, sex, and breeding region. Ecology and Evolution 13, e9817. https://doi.org/10.1002/ece3.9817Google Scholar
Moreno-Opo, R., Trujillano, A., Arredondo, Á., González, L.M. and Margalida, A. (2015). Manipulating size, amount and appearance of food inputs to optimize supplementary feeding programs for European vultures. Biological Conservation 181, 2735. https://doi.org/10.1016/j.biocon.2014.10.022CrossRefGoogle Scholar
Moreno-Opo, R., Trujillano, A. and Margalida, A. (2020). Larger size and older age confer competitive advantage: dominance hierarchy within European vulture guild. Scientific Reports 10, 112. https://doi.org/10.1038/s41598-020-59387-4CrossRefGoogle ScholarPubMed
Ogada, D.L., Torchin, M.E., Kinnaird, M.F. and Ezenwa, V.O. (2012). Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conservation Biology 26, 453460.CrossRefGoogle ScholarPubMed
Paolino, R., Versiani, N., Pasqualotto, N., Rodrigues, T., Krepschi, V. and Chiarello, A. (2016). Buffer zone use by mammals in a Cerrado protected area. Biota Neotropica 16, e20140117.CrossRefGoogle Scholar
Pearce, J. and Boyce, M. (2006). Modelling distribution and abundance with presence‐only data. Journal of Applied Ecology 43, 405412.Google Scholar
Peters, N., Kendall, C., Davies, J., Bracebridge, C., Nicholas, A., Mgumba, M. et al. (2023). Identifying priority locations to protect a wide-ranging endangered species. Biological Conservation 277, 109828.CrossRefGoogle Scholar
Phipps, W., Willis, S., Wolter, K. and Naidoo, V. (2013). Foraging ranges of immature African white-backed vultures (Gyps africanus) and their use of protected areas in southern Africa. PLOS ONE 8, e52813.CrossRefGoogle ScholarPubMed
Piper, S.E. (2006). Supplementary feeding programmes: how necessary are they for the maintenance of numerous and healthy vulture populations? In Proceedings of the International Conference on Conservation and Management of Vulture Populations: 14–16 November 2005. Thessaloniki: Natural History Museum of Crete/WWF Greece, pp. 4150.Google Scholar
Plaza, P.I. and Lambertucci, S.A. (2019). What do we know about lead contamination in wild vultures and condors? A review of decades of research. Science of the Total Environment 654, 409417.Google ScholarPubMed
Poessel, S.A., Brandt, J., Mendenhall, L., Braham, M.A., Lanzone, M.J., McGann, A.J. et al. (2018). Flight response to spatial and temporal correlates informs risk from wind turbines to the California condor. The Condor 120, 330342.CrossRefGoogle Scholar
Pulido-Chadid, K., Virtanen, E. and Geldmann, J. (2023). How effective are protected areas for reducing threats to biodiversity? A systematic review protocol. Environmental Evidence 12, 18.CrossRefGoogle ScholarPubMed
Puryear, W.B. and Runstadler, J.A. (2024). High-pathogenicity avian influenza in wildlife: a changing disease dynamic that is expanding in wild birds and having an increasing impact on a growing number of mammals. Journal of the American Veterinary Medical Association 262, 601609.CrossRefGoogle ScholarPubMed
R Core Team (2024). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at: https://www.R-project.org/.Google Scholar
Restrepo-Cardona, J.S., Narváez, F., Kohn, S., Pineida, R. and Vargas, F.H. (2024). Life history of the Andean Condor in Ecuador. Tropical Conservation Science 17, 19400829241238004.CrossRefGoogle Scholar
Rideout, B.A., Stalis, I., Papendick, R., Pessier, A., Puschner, B., Finkelstein, M.E. et al. (2012). Patterns of mortality in free-ranging California Condors (Gymnogyps californianus). Journal of Wildlife Diseases 48, 95112.CrossRefGoogle ScholarPubMed
Rivera-Huerta, H., Safford, H.D. and Miller, J.D. (2016). Patterns and trends in burned area and fire severity from 1984 to 2010 in the Sierra de San Pedro Mártir, Baja California, Mexico. Fire Ecology 12, 5272.Google Scholar
Rivers, J.W., Johnson, J.M., Haig, S.M., Schwarz, C.J., Burnett, L.J., Brandt, J. et al. (2014a). An analysis of monthly home range size in the critically endangered California Condor Gymnogyps californianus. Bird Conservation International 24, 492504.CrossRefGoogle Scholar
Rivers, J.W., Johnson, J.M., Haig, S.M., Schwarz, C.J., Glendening, J.W., Burnett, L.J. et al. (2014b). Resource selection by the California condor (Gymnogyps californianus) relative to terrestrial-based habitats and meteorological conditions. PLOS ONE 9, e88430.Google ScholarPubMed
Ruiz-Miranda, C.R., Vilchis, L.I. and Swaisgood, R.R. (2020). Exit strategies for wildlife conservation: why they are rare and why every institution needs one. Frontiers in Ecology and the Environment 18, 203210.Google Scholar
Safford, R., Andevski, J., Botha, A., Bowden, C.G.R., Crockford, N., Garbett, R. et al. (2019). Vulture conservation: the case for urgent action. Bird Conservation International 29, 19. https://doi.org/10.1017/S0959270919000042Google Scholar
Santangeli, A., Lambertucci, S., Margalida, A., Carucci, T., Botha, A., Whitehouse-Tedd, K. et al. (2024). The global contribution of vultures towards ecosystem services and sustainability: An experts’ perspective. Iscience 6, 27. https://doi.org/10.1016/j.isci.2024.109925Google Scholar
Schoeman, C.S. and Foord, S.H. (2021). Buffer zones maximize invertebrate conservation in a biosphere reserve. Journal of Insect Conservation 25, 597609.CrossRefGoogle Scholar
Schulz, J.H., Totoni, S., Stanis, S.A.W., Li, C.J., Morgan, M., Hall, D.M. et al. (2023). Policy comparison of lead hunting ammunition bans and voluntary nonlead programs for California condors. Wildlife Society Bulletin 47, e1448.CrossRefGoogle Scholar
Sheppard, J., Walenski, M., Wallace, M., Velazco, J., Porras, C. and Swaisgood, R. (2013). Hierarchical dominance structure in reintroduced California condors: correlates, consequences, and dynamics. Behavioral Ecology and Sociobiology 67, 12271238.CrossRefGoogle Scholar
Silva, I., Fleming, C.H., Noonan, M.J., Alston, J., Folta, C., Fagan, W.F. et al. (2022). Autocorrelation-informed home range estimation: a review and practical guide. Methods in Ecology and Evolution 13, 534544.CrossRefGoogle Scholar
Skinner, C.N., Burk, J.H., Barbour, M.G., Franco-Vizcaíno, E. and Stephens, S.L. (2008). Influences of climate on fire regimes in montane forests of north-western Mexico. Journal of Biogeography 35, 14361451.Google Scholar
Snyder, N.F.R. and Snyder, H.A. (1989). Biology and conservation of the California condor. In Power, D.M. (ed.), Current Ornithology. Boston: Springer, pp. 175267.CrossRefGoogle Scholar
Tobajas, J., Iglesias-Lebrija, J.J., Delepoulle, É., Álvarez, E., Oliva-Vidal, P. and Margalida, A. (2024). Movement ecology of pre-adult Cinereous Vultures Aegypius monachus: insights from a reintroduced population. Bird Conservation International 34, e17.Google Scholar
U.S. Fish & Wildlife Service. (2023). California Condor Population Graph, 1980–2022.Google Scholar
Walters, J.R., Derrickson, S.R., Fry, D.M., Haig, S.M., Marzluff, J.M. and Wunderle, J.M. (2010). Status of the California Condor (Gymnogyps californianus) and efforts to achieve its recovery. The Auk 127, 9691001.Google Scholar
Wilbur, S.R. and Kiff, L.F. (1980). The California condor in Baja California, Mexico. American Birds 34, 859.Google Scholar
Supplementary material: File

Ramos et al. supplementary material 1

Ramos et al. supplementary material
Download Ramos et al. supplementary material 1(File)
File 82.1 KB
Supplementary material: File

Ramos et al. supplementary material 2

Ramos et al. supplementary material
Download Ramos et al. supplementary material 2(File)
File 82.5 KB