Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T07:01:05.294Z Has data issue: false hasContentIssue false

Fixed-plot monitoring as a tool to assess population trends of underground nesting seabirds: an example with Cory’s Shearwater at its world’s largest colony

Published online by Cambridge University Press:  20 January 2025

Paulo Catry*
Affiliation:
Marine and Environmental Sciences Centre (MARE)/Aquatic Research Network (ARNET), Ispa - Instituto Universitário, 1149-041 Lisbon, Portugal
Maria Dias
Affiliation:
Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
Dília Menezes
Affiliation:
Instituto das Florestas e Conservação da Natureza da Madeira, Governo Regional da Madeira, 9050-027 Funchal, Portugal
Paulo Oliveira
Affiliation:
Instituto das Florestas e Conservação da Natureza da Madeira, Governo Regional da Madeira, 9050-027 Funchal, Portugal
Daniel Lopes
Affiliation:
Marine and Environmental Sciences Centre (MARE)/Aquatic Research Network (ARNET), Ispa - Instituto Universitário, 1149-041 Lisbon, Portugal
Maria Alho
Affiliation:
Marine and Environmental Sciences Centre (MARE)/Aquatic Research Network (ARNET), Ispa - Instituto Universitário, 1149-041 Lisbon, Portugal
Letizia Campioni
Affiliation:
Marine and Environmental Sciences Centre (MARE)/Aquatic Research Network (ARNET), Ispa - Instituto Universitário, 1149-041 Lisbon, Portugal
Teresa Catry
Affiliation:
Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
Marie Claire Gatt
Affiliation:
Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
Francesco Ventura
Affiliation:
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Joana Romero
Affiliation:
Department of Coastal Systems, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
José Pedro Granadeiro
Affiliation:
Centro de Estudos do Ambiente e do Mar (CESAM), Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, 1749-016, Lisbon, Portugal
*
Corresponding author: Paulo Catry; Email: [email protected]

Summary

Medium to small petrels that mostly nest in burrows or crevices represent a large fraction of the world’s seabirds, yet their population trends are largely unknown. This lack of knowledge, which has implications for conservation planning, results mostly from methodological difficulties and from the approaches that have been used for their monitoring. Here, we present the surveying scheme created to monitor Cory’s Shearwater Calonectris borealis breeding numbers at their largest known colony, Selvagem Grande (Portugal). We defined 60 circular plots at fixed locations on this 2.45 km2 island and counted nests with eggs annually at the end of laying. Results show that the population increased at 1.45% (95% confidence interval [CI]: 0.72–2.01%) per year between 2009 and 2023. We estimate that the current population size is 38,830 pairs (95% quantile CIs = 34,373–43,713). To the best of our knowledge, this study provides the first systematic information (using fully repeatable methods and providing CIs for the estimates) on population trends of Cory’s Shearwaters, one of the most abundant seabirds in the warm temperate and subtropical North Atlantic and one of the most studied petrels globally. Monitoring using the approach detailed here requires two days of work (by 2–3 persons) per year. Our results and simulations indicate that this is a powerful methodology, with narrow confidence limits for estimated trends and an ability to detect small population changes over short time spans. We suggest that more monitoring protocols similar to this one (with necessary site-specific adaptations, particularly for potential colony expansion where suitable habitat exists) should be developed and implemented in a range of colonies with crevice and burrowing nesting petrels to improve our knowledge on the population status of a broad fraction of the world’s seabirds.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arel-Bundock, V. (2023). marginaleffects: Predictions, Comparisons, Slopes, Marginal Means, and Hypothesis Tests. R package version 0.13. Available at https://CRAN.R-project.org/package=marginaleffects.Google Scholar
Báez, J.C., García-Barcelona, S., Mendonza, M., Urbina, J., Real, R. and Macias, D. (2014). Cory’s shearwater by-catch in the Mediterranean Spanish commercial longline fishery: implications for management. Biodiversity and Conservation 23, 661681.CrossRefGoogle Scholar
Bates, D., Maechler, M., Bolker, B. and Walker, S. (2015). Fitting linear mixed effects models using lme4. Journal of Statistical Software 67, 148.CrossRefGoogle Scholar
Bird, J.P., Terauds, A., Fuller, R.A., Pascoe, P.P., Travers, T.D., McInnes, J.C. et al. (2022). Generating unbiased estimates of burrowing seabird populations. Ecography 2022, e06204.CrossRefGoogle Scholar
Bird, J.P., Woodworth, B.K., Fuller, R.A. and Shaw, J.D. (2021). Uncertainty in population estimates: A meta-analysis for petrels. Ecological Solutions and Evidence 2, e12077.CrossRefGoogle Scholar
BirdLife International (2024). IUCN Red List for Birds. Available at https://datazone.birdlife.org/species/taxonomy (accessed 15 September 2024).Google Scholar
Branco, J.O., Fracasso, H.A.A., Pérez, J.A.A. and Rodrigues-Filho, J.L. (2014). An assessment of oceanic seabird abundance and distribution off the southern Brazilian coast using observations obtained during deep-water fishing operations. Brazilian Journal of Biology 74, S3S15.CrossRefGoogle ScholarPubMed
Brooke, M. (2004). Albatrosses and Petrels Across the World. Oxford: Oxford University Press.Google Scholar
Buxton, R.T., Gormley, A.M., Jones, C.J. and Lyver, P.O. (2016). Monitoring burrowing petrel populations: A sampling scheme for the management of an island keystone species. The Journal of Wildlife Management 80, 149161.CrossRefGoogle Scholar
Catry, P., Geraldes, P., Pio, J.P. and Almeida, A. (2010). Aves marinhas da Selvagem Pequena e do Ilhéu de Fora: censos e notas, com destaque para a dieta da gaivota-de-patas-amarelas. Airo 20, 2935.Google Scholar
Clark, T.J., Matthiopoulos, J., Bonnet-Lebrun, A.S., Campioni, L., Catry, P., Marengo, I. et al. (2019). Integrating habitat and partial survey data to estimate the regional population of a globally declining seabird species, the sooty shearwater. Global Ecology and Conservation 17, e00554.CrossRefGoogle Scholar
Cooper, J., Baccetti, N., Belda, E.J., Borg, J.J., Oro, D., Papaconstantinou, C. et al. (2003). Seabird mortality from longline fishing in the Mediterranean Sea and Macaronesian waters: a review and a way forward. Scientia Marina 67, 5764.CrossRefGoogle Scholar
Dias, M.P., Martin, R., Pearmain, E.J., Burfield, I.J., Small, C., Phillips, R.A. et al. (2019). Threats to seabirds: A global assessment. Biological Conservation 237, 525537.Google Scholar
Fontaine, R., Gimenez, O. and Bried, J. (2011). The impact of introduced predators, light-induced mortality of fledglings and poaching on the dynamics of the Cory’s shearwater (Calonectris diomedea) population from the Azores, northeastern subtropical Atlantic. Biological Conservation 144, 19982011.CrossRefGoogle Scholar
Gianuca, D., Bugoni, L., Jiménez, S., Daudt, N.W., Miller, P., Canani, G. et al. (2020). Intentional killing and extensive aggressive handling of albatrosses and petrels at sea in the southwestern Atlantic Ocean. Biological Conservation 252, 108817.CrossRefGoogle Scholar
Granadeiro, J.P., Dias, M.P., Rebelo, R., Santos, C.D. and Catry, P. (2006). Numbers and population trends of Cory’s shearwaters Calonectris diomedea at Selvagem Grande, Northeast Atlantic. Waterbirds 29, 5660.CrossRefGoogle Scholar
Green, P. and MacLeod, C.J. (2016). SIMR: an R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution 7, 493498.CrossRefGoogle Scholar
Insley, H., Hounsome, M., Mayhew, P. and Elliott, S. (2014). Mark-recapture and playback surveys reveal a steep decline of European Storm Petrels Hydrobates pelagicus at the largest colony in western Scotland. Ringing & Migration 29, 2936.CrossRefGoogle Scholar
Kuznetsova, A., Brockhoff, P.B. and Christensen, R.H.B. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software 82, 126.CrossRefGoogle Scholar
Lecoq, M., Catry, P. and Granadeiro, J.P. (2010). Population trends of Cory’s Shearwaters Calonectris diomedea borealis breeding at Berlengas Islands, Portugal. Airo 20, 3641.Google Scholar
Lopez-Darias, M., Luzardo, J., Martínez, R., González, D., García, E.A. and Cabrera, J. (2011). Poaching vs. patrolling: effects on conservation of Cory’s shearwater Calonectris diomedea borealis colonies. Bird Conservation International 21, 342352.CrossRefGoogle Scholar
Meirinho, A., Barros, N., Oliveira, N., Catry, P., Lecoq, M., Paiva, V. et al. (2014). Atlas das Aves Marinhas de Portugal. Lisbon: Sociedade Portuguesa para o Estudo das Aves.Google Scholar
Munilla, I., Genovart, M., Paiva, V.H. and Velando, A. (2016). Colony foundation in an oceanic seabird. PLOS ONE 11, e0147222.CrossRefGoogle Scholar
Oliveira, P., Menezes, D., Santos, D., Ribeiro, C. and Nogales, M. (2023). Expedição Selvagens 50: Relatório e Programa de Monitorização a Longo Prazo. Funchal: Instituto das Florestas e Conservação da Natureza.Google Scholar
Oppel, S., Hervías, S., Oliveira, N., Pipa, T., Silva, C., Geraldes, P. et al. (2014). Estimating population size of a nocturnal burrow-nesting seabird using acoustic monitoring and habitat mapping. Nature Conservation 7, 113.CrossRefGoogle Scholar
Orben, R.A., Fleishman, A.B., Borker, A.L., Bridgeland, W., Gladics, A.J., Porquez, J. et al. (2019). Comparing imaging, acoustics, and radar to monitor Leach’s storm-petrel colonies. PeerJ 7, e6721.CrossRefGoogle ScholarPubMed
R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Ramos, R., Granadeiro, J.P., Nevoux, M., Mougin, J.L., Dias, M.P. and Catry, P. (2012). Combined spatio-temporal impacts of climate and longline fisheries on the survival of a trans-equatorial marine migrant. PLOS ONE 7, e40822.CrossRefGoogle ScholarPubMed
Rodríguez, A., Arcos, J.M., Bretagnolle, V., Dias, M.P., Holmes, N.D., Louzao, M. et al. (2019). Future directions in conservation research on petrels and shearwaters. Frontiers in Marine Science 6, 94.CrossRefGoogle Scholar
Rodríguez, A., Holmes, N.D., Ryan, P.G., Wilson, K.J., Faulquier, L., Murillo, Y. et al. (2017). Seabird mortality induced by land-based artificial lights. Conservation Biology 31, 9861001.CrossRefGoogle ScholarPubMed
Rodríguez, B., Suárez-Pérez, A., Méndez, C., Acosta, Y. and Rodríguez, A. (2023). Numbers of seabirds attracted to artificial lights should not be the only indicator of population trends. Animal Conservation 26, 425427.CrossRefGoogle Scholar
Ryan, P.G., Dilley, B.J. and Ronconi, R.A. (2019). Population trends of spectacled petrels Procellaria conspicillata and other seabirds at Inaccessible Island. Marine Ornithology 47, 257265.Google Scholar
Virtue, J., Turner, D., Williams, G., Zeliadt, S., Walshaw, H. and Lucieer, A. (2023). Burrow-nesting seabird survey using UAV-mounted thermal sensor and count automation. Drones 7, 674.CrossRefGoogle Scholar
Zhang, D. (2023). rsq: R-Squared and Related Measures. R package version 2.6. Available at https://CRAN.R-project.org/package=rsq.Google Scholar
Supplementary material: File

Catry et al. supplementary material

Catry et al. supplementary material
Download Catry et al. supplementary material(File)
File 15.6 KB