Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T07:48:39.987Z Has data issue: false hasContentIssue false

Fishery bycatch is among the most important threats to the European population of Greater Scaup Aythya marila

Published online by Cambridge University Press:  15 January 2020

DOMINIK MARCHOWSKI*
Affiliation:
Ornithological Station, Museum and Institute of Zoology, Polish Academy of Sciences, Gdańsk, Poland.
ŁUKASZ JANKOWIAK
Affiliation:
Institute of Biology, Szczecin University, Szczecin, Poland.
ŁUKASZ ŁAWICKI
Affiliation:
West-Pomeranian Nature Society, Szczecin, Poland.
DARIUSZ WYSOCKI
Affiliation:
Institute of Marine and Environmental Sciences, Szczecin University, Szczecin, Poland.
PRZEMYSŁAW CHYLARECKI
Affiliation:
Ornithological Lab, Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland.
*
*Author for correspondence; email: [email protected]

Summary

For Greater Scaup Aythya marila, classified as ‘Vulnerable’ on the European Red List of Birds, the south-western Baltic Sea is one of the most important wintering sites in Europe. In this area, a large concentration of gillnet fishery temporally overlaps periods of the most abundant occurrence of foraging diving birds. The aim of the article is to show how bycatch can impact the population of a diving duck. To assess this, we calculate the Potential Biological Removal (PBR) for the studied Greater Scaup population and we model the population change according to age-structured matrix models. Summing all the available recent figures on Greater Scaup bycatch in north-west Europe yields an estimated mean annual total of 3,991 individuals (2% of the flyway population). For a baseline stable population, an age-structured matrix model indicates that at this bycatch level the Greater Scaup population that winters in north-west Europe will decrease by 36% over the next 30 years, qualifying the status of the population as ‘Vulnerable’ according to IUCN criteria. As this population also experiences decline prior to bycatch, this decrease will be 57%, which qualifies the status as ‘Endangered’. PBR as an indicator of population vitality does not work in our case because the PBR-informed allowable bycatch values have a significantly negative impact on the population. Our results indicate unambiguously that fishery bycatch is among the most important threats responsible for the Greater Scaup’s decline. While recent data suggest that some improvement has taken place in the species’ status over the last 10 years, measures to protect Greater Scaup from bycatch are required. The solution should involve the prohibition of gillnet fishing in selected key sites and the use of mitigation techniques in other areas.

Type
Research Article
Copyright
© BirdLife International, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afton, A. D. and Anderson, M. G. (2001) Declining Scaup populations: A retrospective analysis of long-term population and harvest survey data. J. Wildl. Manage. 65: 781796.CrossRefGoogle Scholar
Alexander, W. C. (1983) Differential sex distributions of wintering diving ducks (Aythyini) in North America. American Birds 37: 2629.Google Scholar
Allen, D., Mellon, C. and Enlander, I. (2004) Factors relating to the wintering population of diving ducks on the Lough Neagh System. Belfast: Allen and Mellon Environmental Ltd. Report for EHS CON 2/1 (162).Google Scholar
Amano, T., Székely, T., Sandel, B., Nagy, S., Mundkur, T., Langendoen, T., Blanco, D., Soykan, C. and Sutherland, W. J. (2017) Successful conservation of global waterbird populations depends on effective governance. Nature 553(7687): 199202.CrossRefGoogle ScholarPubMed
Aunins, A., Nilsson, L., Hario, M., Garthe, S., Dagys, M., Pedersen, I. K., et al. (2013) HELCOM Core Indicator Report. Retrieved from http://www.helcom.fi/ on 23 October 2016.Google Scholar
Austin, J. E., Afton, A. D., Anderson, M. G., Clark, R. G., Custer, C. M., Lawrence, J. S., Pollard, J. B. and Ringelman, J. R. (2000) Declining Scaup populations: issues, hypotheses, and research needs. Wildl. Soc. Bull. 28: 254263.Google Scholar
Baum, J. K., Myers, R. A., Kehler, D. G., Worm, B., Harley, S. J. and Doherty, P. A. (2003) Collapse and conservation of shark populations in the Northwest Atlantic. Science 299: 389392.CrossRefGoogle ScholarPubMed
Bellebaum, J., Schirmeister, B., Sonntag, N. and Garthe, S. (2012) Decreasing but still high: bycatch of seabirds in gillnet fisheries along the German Baltic coast. Aquat. Conserv. Mar. Freshw. Ecosyst. 23: 210221.CrossRefGoogle Scholar
Bengtson, S. A. (1972) Reproduction and fluctuations in the size of duck populations at Lake Myvatn, Iceland. Ornis Scandinavica 2: 1726.CrossRefGoogle Scholar
Bicknell, A. W. J., Knight, M. E., Bilton, D. T., Campbell, M., Reid, J. B., Newton, J. and Votier, S. C. (2014) Intercolony movement of pre-breeding seabirds over oceanic scales: implications of cryptic age-classes for conservation and metapopulation dynamics. Divers. Distrib. 20: 160168.CrossRefGoogle Scholar
BirdLife International (2015) European Red List of Birds. Luxembourg: Office for Official Publications of the European Communities. Available at: http://datazone.birdlife.org/info/euroredlistGoogle Scholar
BirdLife International (2018) Aythya marila. The IUCN Red List of Threatened Species 2018: e.T22680398A132525108. http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22680398A132525108.en. Downloaded on 10 October 2019.CrossRefGoogle Scholar
BirdLife International (2019) BirdLife position on Good Environmental Status threshold criteria for Descriptor 1: seabird bycatch and population abundance. Technical document available at: https://portal.helcom.fi/meetings/Incidental%20bycatch%20WS%201-2019-647/MeetingDocuments/BirdLife%20position%20D1criteria_02092019_FINAL.pdfGoogle Scholar
Bradbury, G., Shackshaft, M., Scott-Hayward, L., Rextad, E., Miller, D., and Edwards, D. (2017) Risk assessment of seabird bycatch in UK waters. Report to Defra. Defra Project: MB0126.Google Scholar
Carboneras, C. and Kirwan, G. M. (2017) Greater Scaup (Aythya marila). In del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. and de Juana, E., eds. Handbook of the birds of the world alive. Barcelona: Lynx Edicions. Retrieved from http://www.hbw.com/node/52912 on 23 October 2017.Google Scholar
COM (2012) (COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT AND THE COUNCI)L Action Plan for reducing incidental catches of seabirds in fishing gears. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52012DC0665.Google Scholar
De Vink, J. M. A., Clark, R. G., Slattery, S. M. and Wayland, M. (2008) Is selenium affecting body condition and reproduction in boreal breeding scaup, scoters, and ring-necked ducks? Environ. Poll. 152: 116122.CrossRefGoogle Scholar
Degel, H., Petersen, I. K., Holm, T. E., and Kahlert, J. (2010) Fugle som bifangst I garnfiskeriet. Estimat af utilsigtet bifangst af havfugle i garnfiskeriet i området omkring Ærø. Charlottenlund: DTU Aqua. Institut for Akvatiske Ressourcer. DTU Aqua-rapport, Nr. 227-2010. (In Danish).Google Scholar
Dillingham, P. W. and Fletcher, D. (2008) Estimating the ability of birds to sustain additional human-caused mortalities using a simple detection rule and allometric relationship. Biol. Conserv. 141: 17831792.CrossRefGoogle Scholar
Durinck, J., Skov, H., Jensen, E. P. and Pihl, S. (1996) Important Marine Areas for wintering birds in the Baltic Sea. Colonial Waterbirds 19: 157.CrossRefGoogle Scholar
Field, R., Crawford, R., Enever, R., Linkowski, T., Martin, G., Morkūnas, J., Morkūnė, R., Rouxel, Y.and Oppel, S. (2019) High contrast panels and lights do not reduce bird bycatch in Baltic Sea gillnet fisheries. Global Ecol. Conserv. (In press), doi: https://doi.org/10.1016/j.gecco.2019.e00602.CrossRefGoogle Scholar
Flint, P. L. (2015) Population dynamics of sea ducks: Using models to understand the causes, consequences, evolution, and management of variation in life history characteristics. Pp. 6396 in Savard, J.-P. L., Derksen, D. V., Esler, D., and Eadie, J. M., eds. Ecology and conservation of North American sea ducks. Boca Raton, FL: CRC Press. (Studies in Avian Biology no. 46).Google Scholar
Flint, P. L., Grand, J. B., Fondell, T. F. and Morse, J. A. (2006) Population dynamics of Greater Scaup breeding on the Yukon–Kuskokwim Delta, Alaska. Wildl. Monogr. 162: 122.CrossRefGoogle Scholar
Fournier, M. A. and Hines, A. E. (2001) Breeding ecology of sympatric Greater and Lesser Scaup (Aythya marila and Aythya affinis) in the subarctic Northwest Territories. Arctic 54: 444456.CrossRefGoogle Scholar
Fox, A. D., Nielsen, R. D. and Petersen I, K. (2018) Climate-change not only threatens bird populations but also challenges our ability to monitor them. Ibis 161: 467474.CrossRefGoogle Scholar
Gardarsson, A. and Einarsson, A. (2004) Resource limitation of diving ducks at Myvatn: Food limits production. Aquat. Ecol. 38: 285295CrossRefGoogle Scholar
Grimm, P. (1985) Die Stellnetzfischerei als eine wichtige Form nicht nur der ornithofaunistischen Nachweisführung. Naturschutzarb Mecklenburg 28: 104106.Google Scholar
Hirschfeld, A., Attard, G. and Scott, L. (2019) Bird hunting in Europe: an analysis of bag figures and the potential impact on the conservation of threatened species. British Birds 112: 153166.Google Scholar
Hobson, K. A., Wunder, M. B., Van Wilgenburg, S. L., Clark, R. G. and Wassenaar, L. I. (2009) A method for investigating population declines of migratory birds using stable isotopes: Origins of harvested Lesser Scaup in North America. PLoS ONE 4(11): e7915.CrossRefGoogle ScholarPubMed
Horswill, C. and Robinson, R. A. (2015) Review of seabird demographic rates and density dependence. Peterborough: British Trust for Ornithology and JNCC.Google Scholar
ICES (2013) Report of the ICES Advisory Committee 2013. Copenhagen, Denmark: International Council for the Exploration of the Sea. ICES Advice, 2013. Books 1-11.Google Scholar
ICES (2018) Report of the Joint OSPAR/HELCOM/ICES Working Group on Marine Birds (JWGBIRD), 1–5 October 2018, Ostende, Belgium: International Council for the Exploration of the Sea. (ICES CM 2017/ACOM:240.Google Scholar
IUCN Standards and Subcommittee, Petitions (2014) Guidelines for using the IUCN Red List categories and criteria. Version 11. Prepared by the Standards and Petitions Subcommittee. Downloadable from: https://cmsdata.iucn.org/downloads/redlistguidelines.pdfGoogle Scholar
Jensen, F. P., Perennou, C. and Lutz, M. (2009) European Union Management Plan 2009-2011. Scaup Aythya marila. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Kessel, B., Rocque, D. A. and Barclay, J. S. (2002) Greater Scaup (Aythya marila). In Poole, A. F. and Gill, F. B., eds. The Birds of North America. Version 2.0. Available at https://birdsna.org/CrossRefGoogle Scholar
Kirchhoff, K. (1982) Waterfowl losses due to fishing on the Schleswig-Holstein Baltic Sea coast. (Original German title: Wasservogelverluste durch die Fischerei an der Schleswig– holsteinischen Ostseeküste). Vogelwelt 103: 8189. (In German).Google Scholar
Klinge, M. and Grimm, M. P. (2003) Voor vogels en vissen. Bepaling van de omvang van de vogelsterfte in de staande nettenvisserij in 2002–2003, uitvoering van experimenten met alternatieve visserijtechnieken en evaluatie van maatregelen voor het seizoen 2003–2004. Deventer, The Netherlands: Witteveen and Bos. (In Dutch).Google Scholar
Laursen, K., Pihl, S. and Komdeur, I. (1992) New figures of seaduck winter populations in the Western Palearctic. IWRB Seaduck Bull. 1: 68.Google Scholar
Ławicki, Ł., Guentzel, S. and Wysocki, D. (2012) Projects of the conservation plans for SPAs Natura 2000: the Szczecin Lagoon PLB320009, the Kamien Lagoon and Dziwna PLB320011 and the Odra Mouth River and Szczecin Lagoon PLH320018. Szczecin, Poland. Report for the Maritime Office in Szczecin. Project No. POIS.05.03.00-00-280/10. ECO-EXPERT Sp.j. (In Polish).Google Scholar
Lawrence, J. D., Gramacy, R. B., Thomas, L. and Buckland, S. T. (2013) The importance of prior choice in model selection: A density dependence example. Methods Ecol. Evol. 4: 2533.CrossRefGoogle Scholar
Lebreton, J. D. (2005) Dynamical and statistical models for exploited populations. Australian and New Zealand J. Stat. 47: 4963.CrossRefGoogle Scholar
Lehikoinen, A., Jaatinen, K., Vahatalo, A. V., Preben, C., Crowe, O., Deceuninck, B., Hearn, R., Holt, C. A., Hornman, M., Keller, V., Nilsson, L., Langendoen, T., Tomankova, I., Wahl, J. and Fox, A. D. (2013) Rapid climate driven shifts in wintering distributions of three common waterbird species. Global Change Biol. 19: 20712081.CrossRefGoogle ScholarPubMed
Lewison, R. L., Crowder, L. B., Read, A. J. and Freeman, S. A. (2004) Understanding impacts of fisheries bycatch on marine megafauna. Trends Ecol. Evol. 19: 598604.CrossRefGoogle Scholar
Marchowski, D. and Leitner, M. (2019) Conservation implications of extraordinary Greater Scaup (Aythya marila) concentrations in the Odra Estuary, Poland. Condor 20: 110.Google Scholar
Marchowski, D., Neubauer, G., Ławicki, Ł., Woźniczka, A., Wysocki, D., Guentzel, S. and Jarzemski, M. (2015) The importance of non-native prey, the Zebra Mussel Dreissena polymorpha, for the declining Greater Scaup Aythya marila: a case study at a key European staging and wintering site. PLoS ONE, 10(12): e0145496.CrossRefGoogle Scholar
Marchowski, D., Jankowiak, Ł., Wysocki, D., Ławicki, Ł. and Girjatowicz, J. (2017) Ducks change wintering pattern due to changing climate in the important wintering waters of the Odra River Estuary. PeerJ5: e3604.CrossRefGoogle Scholar
Marchowski, D., Ławicki, Ł., Kaliciuk, J., Guentzel, S. and Kajzer, Z. (2018) Long-term changes in the numbers of waterbirds at an important European wintering site. Acta Biologica 5: 111122.CrossRefGoogle Scholar
Mendel, B., Sonntag, N., Wahl, J., Schwemmer, P., Dries, H., Guse, N., Müller, S. and Garthe, S. (2008) Profiles of seabirds and waterbirds of the German North and Baltic Seas. Distribution, ecology and sensitivities to human activities within the marine environment. Bonn–Bad Godesberg: BFN.Google Scholar
Mooij, J. K. (2005) Protection and use of waterbirds in the European Union. Beiträge zur Jagd- und Wildforschung 30: 4976.Google Scholar
Musil, P., Musilová, Z., Fuchs, R. and Poláková, S. (2011) Long-term changes in numbers and distribution of wintering waterbirds in the Czech Republic, 1966–2008. Bird Study 58: 450460.CrossRefGoogle Scholar
Nagy, S., Flink, S. and Langendoen, T. (2014) Waterbirds trends 1988-2012. Results of trend analyses of data from the Inernational Waterbird Census in the African-Eurasian Flyway. Ede, the Netherlands: Wetlands International.Google Scholar
O’Brien, S. H., Cook, A. S. C. P. and Robinson, R. A. (2017) Implicit assumptions underlying simple harvest models of marine bird populations can mislead environmental management decisions. J. Environ. Manage. 201: 163171.CrossRefGoogle ScholarPubMed
Pavon-Jordan, D., Fox, A. D., Clausen, Dagys, P., Deceuninck, M., Devos, B., Hearn, K., R, , Holt, C. A., Hornman, M., Keller, V., Langendoen, T., Ławicki, Ł., Lorentsen, S. H., Luiguj, L., Meissner, W., Musil, P., Nilsson, L., Paquet, J. Y., Stipniece, A., Stroud, D. A., Wahl, J., Zenatello, M. and Lehikoinen, A. (2015) Climate-driven changes in winter abundance of a migratory waterbird in relation to EU protected areas. Divers. Distrib. 21: 571582.CrossRefGoogle Scholar
Petersen, I. K. and Nielsen, R. D. (2015) Omfanget af bifangster af fugle i nedgarn i fritidsfiskeriet i to NATURA2000 omrader. Notat fra DCE - Nationalt Center for Miljo og Energi. Aarhus, Denmark: Aarhus Universitet.Google Scholar
Pott, C. and Wiedenfeld, D. A. (2017) Information gaps limit our understanding of seabird bycatch in global fisheries. Biol. Conserv. 210: Part A, 192204.CrossRefGoogle Scholar
Pöysä, H., Rintala, J., Johnson, D. H., Kauppinen, J., Lammi, E., Nudds, T. D. and Väänänen, V. M. (2016) Environmental variability and population dynamics: Do European and North American ducks play by the same rules? Ecol. Evol. 6: 70047014.Google Scholar
Psuty, I., Szymanek, L., Całkiewicz, J., Dziemian, Ł., Ameryk, A., Ramutkowski, M., Spich, K.Wodzinowski, T., Woźniczka, A. and Zaporowski, R. (2017) Opracowanie podstaw racjonalnego monitorowania przyłowu ptaków w celu zrównoważonego zarządzania rybołówstwem przybrzeżnym na morskich obszarach NATURA 2000. [Developing the basis for rational monitoring of by-catch of birds for sustainable management of coastal fishing in the marine areas of NATURA 2000.] Gdynia: Morski Instytut Rybacki - Państwowy Instytut Badawczy. (In Polish with English summary). Available at: przylowy.mir.gdynia.pl/monografia.Google Scholar
Runge, M. C., Sauer, J. R., Avery, M. L., Blackwell, B. F. and Koneff, M. D. (2009) Assessing allowable take of migratory birds. J. Wildl. Manage. 73: 556565.CrossRefGoogle Scholar
Skov, H., Heinänen, S., Žydelis, R., Bellebaum, J., Bzoma, S., Dagys, M., Durinck, J.Garthe, S.Grishanov, G.Hario, M.Kieckbusch, J. J.Kube, J.Kuresoo, A.Lasson, K.Luigujoe, L.Meissner, W.Nehls, H. W.Nilsson, L.Petersen, I. K.Roos, M. M.Pihl, S.Sonntag, N.Stock, A.Stipniece, A. and Wahl, J. (2011) Waterbird populations and pressures in the Baltic Sea. Copenhagen: Nordic Council of Ministers.Google Scholar
Small, C., Waugh, S. M. and Phillips, R. A. (2013) The justification, design and implementation of Ecological Risk Assessments of the effects of fishing on seabirds. Marine Policy 37: 192199.CrossRefGoogle Scholar
Sonntag, N., Schwemmer, H., Fock, H. O., Bellebaum, J. and Garthe, S. (2012) Seabirds, set-nets, and conservation management: assessment of conflict potential and vulnerability of birds to bycatch in gillnets. ICES J. Mar. Sci. 69: 578589.CrossRefGoogle Scholar
Stempniewicz, L. (1994) Marine birds drowning in fishing nets in the Gulf of Gdańsk (southern Baltic): numbers, species composition, age and sex structure. Ornis Svecica 4: 123132.Google Scholar
van den Boogaard, B., Krijgsveld, K. L., van Rijn, S. H. M. and Boudewijn, T. J. (2013) Bijvangst van vogels in staand want in het IJsselmeer en het Markermeer Winter 2012/2013. Culemborg: Bureau Waardenburg bv Adviseurs voor ecologie and milieu.Google Scholar
van Erden, M. R. and de Leeuw, J. J. (2010) How Dreissena sets the winter scene for water birds: dynamic interaction between diving ducks and zebra mussels. In van der Velde, G., Rajagopal, S. and bij de Vaate, A., eds. The Zebra Mussel in Europe. Leiden, The Netherlands: Backhuys Publ.Google Scholar
van Erden, M. R., Dubbeldam, W. and Muller, J. (1999) Sterfte van watervogels door visserij met staande netten in het IJsselmeer en Markermeer. Lelystad, The Netherlands: RIZA rapport nr. 99.060.Google Scholar
Viksne, J., Svazas, S., Czajkowski, A., Janus, M., Mischenko, A., Kozulin, A., Kuresoo, A. and Serebryakov, V. (2010) Atlas of duck populations in Eastern Europe. Vilnius, Lithuania: Akstis.Google Scholar
Wetlands International (2010) Guidance on waterbird monitoring methodology: Field protocol for waterbird counting. Wageningen, The Netherlands: Wetlands International. Available at: http://www.wetlands.org.Google Scholar
Wetlands International (2017) Flyway trend analyses based on data from the African-Eurasian Waterbird Census from the period of 1967-2015. Ede, The Netherlands: Wetlands International. URL: http://iwc.wetlands.org/index.php/aewatrends.Google Scholar
Wetlands International (2018) Waterbird Population Estimates. Retrieved from wpe.wetlands.org on 04 June 2018.Google Scholar
Wetlands International (2019) Waterbird population estimates. Retrieved from wpe.wetlands.org on 20 April 2018.Google Scholar
Wiedenfeld, D. A., Crawford, R. and Pott, C. M. (2015) Results of a workshop on reduction of bycatch of seabirds, sea turtles, and sea mammals in gillnets, 21-23 January 2015. Shepherdstown, West Virginia, USA: American Bird Conservancy and BirdLife International.Google Scholar
Žydelis, R., Bellebaum, J., Österblom, H., Vetemaa, M., Schirmeister, B., Stipniece, A., et al. (2009) Bycatch in gillnet fisheries – an overlooked threat to waterbird populations. Biol. Conserv. 142: 12691281.CrossRefGoogle Scholar
Žydelis, R., Small, C. and French, G. (2013) The incidental catch of seabirds in gillnet fisheries: a global review. Biol. Conserv. 162: 7688.CrossRefGoogle Scholar
Supplementary material: File

Marchowski et al. supplementary material

Marchowski et al. supplementary material 1
Download Marchowski et al. supplementary material(File)
File 26.9 KB
Supplementary material: File

Marchowski et al. supplementary material

Marchowski et al. supplementary material 2

Download Marchowski et al. supplementary material(File)
File 16.6 KB