Hostname: page-component-f554764f5-44mx8 Total loading time: 0 Render date: 2025-04-14T06:34:20.943Z Has data issue: false hasContentIssue false

Estimating the Andean Condor Vultur gryphus population at the northern edge of its geographical range: a citizen science-based approach

Published online by Cambridge University Press:  02 April 2025

Fausto Alexis Sáenz-Jiménez*
Affiliation:
Universidad Pedagógica y Tecnológica de Colombia, Escuela de Biología, Boyacá, Colombia
María A. Parrado-Vargas
Affiliation:
The Peregrine Fund, Boise, USA Fundación Cóndor Andino, Quito, Ecuador Proyecto de Conservación de Aguas y Tierras, ProCAT Colombia, C.P. 110121, Bogotá, Colombia
Juan Sebastián Restrepo-Cardona
Affiliation:
The Peregrine Fund, Boise, USA Fundación Cóndor Andino, Quito, Ecuador Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, USA
Sebastián Kohn
Affiliation:
Fundación Cóndor Andino, Quito, Ecuador
Fabricio Narváez
Affiliation:
Fundación Cóndor Andino, Quito, Ecuador
Antoni Margalida
Affiliation:
Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), 13071 Ciudad Real, Spain Instituto Pirenaico de Ecología (CSIC), 22700 Jaca, Spain
*
Corresponding author: Fausto Sáenz-Jiménez; Email: [email protected]

Summary

Andean Condor Vultur gryphus populations are particularly low in the northern Andes. The species is considered nearly eradicated from Venezuela and listed as “Endangered” in Ecuador and “Critically Endangered” in Colombia. Even though it is severely endangered, the size of the Colombian condor population remains unknown. Using a citizen science-based approach, we conducted the first Andean Condor count for Colombia with the help of 207 observers at 84 simultaneous observation points. We used N-mixture models for spatially replicated counts to estimate the condor population. The total number of condors recorded simultaneously was 63 individuals, and we estimated a population size of 175–269 individuals using a maximum likelihood approach and 165–222 and 172–229 for the two best models using the Bayesian approach. Adults were observed more frequently than juveniles (1:0.43), a common pattern among raptors related to the higher mortality rates of immature birds, which is a prominent conservation concern due to the status of the species and the threats it currently faces throughout the northern Andes. Our citizen science-based study made it possible to gather, for the first time in Colombia, consolidated information on the status of the Andean Condor population using a standardised methodology to provide a reference for future counts and conservation actions, both at the national level and throughout the geographical range of the species.

Resumen

Resumen

Las poblaciones del Cóndor Andino Vultur gryphus son particularmente bajas en el norte de los Andes. Se considera que la especie ha sido extirpada de Venezuela y se categoriza como En Peligro para Ecuador y En Peligro Crítico para Colombia. A pesar de su categoría de amenaza, el tamaño de las poblaciones de cóndor en Colombia sigue siendo desconocido. A partir de una aproximación basada en la ciencia ciudadana, realizamos el primer conteo nacional de Cóndor Andino para Colombia con la participación de 207 observadores en 84 puntos de observación simultánea. Usamos modelos N-mixtos para conteos replicados en el espacio con el fin de estimar las poblaciones del cóndor. El número total de cóndores registrados simultáneamente fue de 63 individuos y estimamos un tamaño poblacional de 175–269 individuos usando la aproximación de máxima verosimilitud y de 172–229 usando una aproximación bayesiana. Los adultos fueron observados con mayor frecuencia en contraste con los juveniles (1:0.43), un patrón común entre las aves rapaces, relacionado con las altas tasas de mortalidad en aves inmaduras. Este resultado constituye un importante problema de conservación debido al estado de la especie y a las amenazas que enfrenta actualmente a lo largo de los Andes del norte. Este estudio, basado en ciencia ciudadana, permitió registrar por primera vez para Colombia, información consolidada del estado de las poblaciones del Cóndor Andino usando una metodología estandarizada. Además, proporciona una referencia para futuros conteos y acciones de conservación, tanto a nivel nacional como en todo el rango geográfico de la especie.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aguilar, H.F. (2000). El cóndor de los Andes Vultur gryphus (Ciconiiformes: Ciconiidae: Cathartinae): un visitante ocasional en Venezuela. Revista de Ecologia Latinoamericana 6, 2333.Google Scholar
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716723.Google Scholar
Amstrup, S.C., McDonald, T.L. and Stirling, I. (2001). Polar bears in the Beaufort Sea: a 30-year mark-recapture case history. Journal of Agricultural, Biological, and Environmental Statistics 6, 221234.Google Scholar
Arango-Caro, S., Arenas, D., Zuluaga, S. and Sáenz-Jiménez, F. (2016). Vultur gryphus . In Renjifo, L.M., Amaya-Villarreal, A.M., Burbano-Girón, J. and Velásquez-Tibatá, J. (eds), Libro Rojo de Aves de Colombia, Volumen II: Ecosistemas Abiertos, Secos, Insulares, Acuáticos Continentales, Marinos, Tierras Altas del Darien y Sierra Nevada de Santa Marta y Bosques Húmedos del Centro, Norte y Oriente del País. Bogotá: Editorial Pontificia Universidad Javeriana/Instituto Alexander von Humboldt, pp. 151157.Google Scholar
BirdLife International (2023). Vultur gryphus. The IUCN Red List of Threatened Species 2020. e.T22697641A181325230.Google Scholar
Brown, E.D. and Williams, B.K. (2019). The potential for citizen science to produce reliable and useful information in ecology. Conservation Biology 33, 561569.Google ScholarPubMed
Buechley, E.R., Santangeli, A., Girardello, M., Neate-Clegg, M.H.C., Oleyar, D., McClure, C.J.W. et al. (2019). Global raptor research and conservation priorities: Tropical raptors fall prey to knowledge gaps. Diversity and Distributions 25, 856869.CrossRefGoogle Scholar
Chakraborty, I. and Maity, P. (2020). COVID-19 outbreak: Migration, effects on society, global environment and prevention. Science of the Total Environment 728, 138882.CrossRefGoogle ScholarPubMed
Coz, D.M. and Young, J.C. (2020). Conflicts over wildlife conservation: Learning from the reintroduction of beavers in Scotland. People and Nature 2, 406419.CrossRefGoogle Scholar
Dail, D. and Madsen, L. (2011). Models for estimating abundance from repeated counts of an open metapopulation. Biometrics 67, 577587.CrossRefGoogle ScholarPubMed
Donázar, J.A. and Feijóo, J.E. (2002). Social structure of Andean Condor roosts: Influence of sex, age, and season. The Condor 104, 832837.Google Scholar
Donnelly, A., Crowe, O., Regan, E., Begley, S. and Caffarra, A. (2014). The role of citizen science in monitoring biodiversity in Ireland. International Journal of Biometeorology 58, 12371249.Google ScholarPubMed
Ferguson-Lees, J. and Christie, D.A. (2001). Raptors of the World. New York: Houghton Mifflin Company.Google Scholar
Fiske, I. and Chandler, R. (2011). Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43, 123Google Scholar
Foster-Smith, J. and Evans, S.M. (2003). The value of marine ecological data collected by volunteers. Biological Conservation 113, 199213.Google Scholar
Freile, J.F., Santander, T.G., Jiménez-Uzcátegui, G., Cisneros-Heredia, D.F., Guevara, E.A., Sánchez-Nivicela, M. et al. (2019). Lista Roja de las Aves del Ecuador. Quito: Ministerio del Ambiente/Aves y Conservación/Comité Ecuatoriano de Registros Ornitológicos/Fundación Charles Darwin/Universidad del Azuay/Red Aves Ecuador/Universidad San Francisco de Quito.Google Scholar
García-Jiménez, R., Pérez-García, J.M., Margalida, A. and Morales-Reyes, Z. (2022). Avian scavengers’ contributions to people: The cultural dimension of wildlife-based tourism. Science of the Total Environment 806, 150419.Google ScholarPubMed
Greenwood, J.J.D. (2007). Citizens, science and bird conservation. Journal of Ornithology 148, S77S124.Google Scholar
Grilli, M.G., Bildstein, K.L. and Lambertucci, S.A. (2019). Nature’s clean-up crew: Quantifying ecosystem services offered by a migratory avian scavenger on a continental scale. Ecosystem Services 39, 100990.Google Scholar
Guido, J.M., Cecchetto, N.R., Plaza, P.I., Donázar, J.A. and Lambertucci, S.A. (2023). The influence of age, sex and season on Andean condor ranging behavior during the immature stage. Animals 13, 1234.Google ScholarPubMed
Ibarra, J.T., Barreau, A., Massardo, F. and Rozzi, R. (2012). El cóndor Andino: Una especie biocultural clave del paisaje sudamericano. Boletin Chileno de Ornitologia 18, 122.Google Scholar
Kellner, K.F., Fowler, N.L., Petroelje, T.R., Kautz, T.M., Beyer, D.E. and Belant, J.L. (2022). ubms: An R package for fitting hierarchical occupancy and N-mixture abundance models in a Bayesian framework. Methods in Ecology and Evolution 13, 577584.CrossRefGoogle Scholar
Kéry, M., Dorazio, R.M., Soldaat, L., van Strien, A., Zuiderwijk, A. and Royle, J.A. (2009). Trend estimation in populations with imperfect detection. Journal of Applied Ecology 46, 1163e1172.CrossRefGoogle Scholar
Kidwai, Z., Jiménez, J., Louw, C.J., Nel, H.P. and Marshal, J.P. (2019). Using N-mixture models to estimate abundance and temporal trends of black rhinoceros (Diceros bicornis L.) populations from aerial counts. Global Ecology and Conservation 19, e00687.CrossRefGoogle Scholar
Lambertucci, S.A. (2010). Size and spatio-temporal variations of the Andean condor Vultur gryphus population in north-west Patagonia, Argentina: Communal roosts and conservation. Oryx 44, 441447.CrossRefGoogle Scholar
Lambertucci, S.A., Carrete, M., Donázar, J.A. and Hiraldo, F. (2012). Large-scale age-dependent skewed sex ratio in a sexually dimorphic avian scavenger. PLOS ONE 7, e46347.CrossRefGoogle Scholar
Lambertucci, S.A., Navarro, J., Sánchez-Zapata, J.A., Hobson, K.A., Alarcón, P.A.E., Wiemeyer, G. et al. (2018). Tracking data and retrospective analyses of diet reveal the consequences of loss of marine subsidies for an obligate scavenger, the Andean condor. Proceedings of the Royal Society B Biological Sciences 285, 20180550.Google ScholarPubMed
Lieberman, A., Rodriguez, J.V., Paez, J.M. and Wiley, J. (1993). The reintroduction of the Andean condor into Colombia, South America: 1989–1991. Oryx 27, 8390.Google Scholar
Margalida, A., Jiménez, J., Martínez, J.M., Sesé, J.A., García-Ferré, D., Llamas, A. et al. (2020). An assessment of population size and demographic drivers of the Bearded Vulture using integrated population models. Ecological Monographs 90, e01414.CrossRefGoogle Scholar
Margalida, A., Oro, D., Cortés-Avizanda, A., Heredia, R. and Donázar, J.A. (2011). Misleading population estimates: Biases and consistency of visual surveys and matrix modelling in the endangered bearded vulture. PLOS ONE 6, e26784.Google ScholarPubMed
Méndez, D.R., Marsden, S. and Lloyd, H. (2019). Assessing population size and structure for Andean Condor Vultur gryphus in Bolivia using a photographic ‘capture-recapture’ method. Ibis 161, 867877.CrossRefGoogle Scholar
Méndez, D.R., Soria-Auza, R.W., Vargas, F.H. and Herzog, S.K. (2015). Population status of Andean Condors in central and southern Bolivia. Journal of Field Ornithology 86, 205212.CrossRefGoogle Scholar
Moleón, M., Sánchez-Zapata, J.A., Margalida, A., Carrete, M., Owen-Smith, N. and Donázar, J.A. (2014). Humans and scavengers: The evolution of interactions and ecosystem services. Bioscience 64, 394403.Google Scholar
Nakazawa, M. (2019). Pyramid: Draw Population Pyramid. CRAN.R-project.org/package=pyramidGoogle Scholar
Naveda-Rodríguez, A., Vargas, F.H., Kohn, S. and Zapata-Ríos, G. (2016). Andean Condor (Vultur gryphus) in Ecuador: Geographic distribution, population size and extinction risk. PLOS ONE 11, e0151827.Google ScholarPubMed
O’Brien, K. and Whitehead, H. (2013). Population analysis of Endangered northern bottlenose whales on the Scotian Shelf seven years after the establishment of a Marine Protected Area. Endangered Species Research 21, 273284.Google Scholar
Ogada, D.L., Torchin, M.E., Kinnaird, M.F. and Ezenwa, V.O. (2012). Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conservation Biology 26, 453460.Google ScholarPubMed
Padró, J., Vargas, F.H., Lambertucci, S.A., Perrig, P.L., Pauli, J.N., Ortega, A. et al. (2023). Demographic collapse threatens the long-term persistence of Andean condors in the northern Andes. Biological Conservation 285, 110217.CrossRefGoogle Scholar
Parrado-Vargas, M.A. (2023). Áreas de Importancia para la Conservación del Cóndor Andino (Vultur gryphus) en la Cordillera Oriental Colombiana. MSc thesis, Universidad Industrial de Santander, Bucaramanga.Google Scholar
Perrig, P.L., Lambertucci, S.A., Donadio, E., Padró, J. and Pauli, J.N. (2019). Monitoring vultures in the 21st century: The need for standardized protocols. Journal of Applied Ecology 56, 796801.Google Scholar
Plaza, P.I. and Lambertucci, S.A. (2020). Ecology and conservation of a rare species: What do we know and what may we do to preserve Andean condors? Biological Conservation 251, 108782.Google Scholar
R Core Team (2023). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/Google Scholar
Renjifo, L.M., Amaya-Villareal, A.M., Burbano-Girón, J. and Velásquez-Tibatá, J. (eds) (2016). Libro Rojo de Aves de Colombia , Vol. II : Ecosistemas Abiertos, Secos, Insulares, Acuáticos, Continentales, Marinos, Tierras Altas del Darien y Sierra Nevada de Santa Marta y Bosques Húmedos del Centro, Norte y Oriente del País. Bogotá: Editorial Pontificia Universidad Javeriana/Instituto Alexander von Humboldt.Google Scholar
Restrepo-Cardona, J.S. and Hull, V. (2023). A call to mitigate threats and fill existing knowledge gaps to facilitate reintroduction and conservation of the Andean Condor in Colombia. Ornitologia Colombiana 23, 4447.Google Scholar
Restrepo-Cardona, J.S., Kohn, S., Narváez, F., Pineida, R. and Vargas, F.H. (2024). Life history of the Andean Condor in Ecuador. Tropical Conservation Science 17, 18.Google Scholar
Restrepo-Cardona, J.S., Parrado, M.A., Vargas, F.H., Kohn, S., Sáenz-Jiménez, F., Potaufeu, Y. et al. (2022). Anthropogenic threats to the Vulnerable Andean Condor in northern South America. PLOS ONE 17, e0278331.Google Scholar
Restrepo-Cardona, J.S., Sáenz-Jiménez, F., Echeverry-Galvis, M.A., Betancur, A., Quintero, A. and López, P. (2018). Breeding behavior of a reintroduced pair of Andean Condor (Vultur gryphus) in the central Andes of Colombia. Ornitologia Neotropical 29, 129133.Google Scholar
Ríos-Uzeda, B. and Wallace, R.B. (2007). Estimating the size of the Andean Condor population in the Apolobamba Mountains of Bolivia. Journal of Field Ornithology 78, 170175.Google Scholar
Rodríguez, C., Barrera-Rodríguez, M. and Ciri-León, F. (2006). Programa Nacional para la Conservación del Cóndor Andino en Colombia: Plan de Acción 2006–2016. Bogotá: Ministerio de Ambiente, Vivienda y Desarrollo Territorial/Corporación Autónoma Regional de Boyacá.Google Scholar
Rodríguez, J. and Orozco, R. (2002). Vultur gryphus. In Renjifo, L., Franco-Amaya, A., Amaya-Espinel, J.D., Kattan, G. and López-Lanus, B. (eds), Libro Rojo de Aves de Colombia. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt/Ministerio del Medio Ambiente.Google Scholar
Royle, J.A. (2004). N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108115.Google ScholarPubMed
Ryan, G.E., Nicholson, E., Eames, J.C., Gray, T.N.E., Loveridge, R., Mahood, S.P. et al. (2019) Simultaneous-count models to estimate abundance from counts of unmarked individuals with imperfect detection. Conservation Biology 33, 697708.Google ScholarPubMed
Sáenz-Jiménez, F. (2020). Factores Ambientales y Antrópicos que Determinan la Presencia y Distribución del Cóndor Andino y la Selección de Lugares de Anidación y Descanso: Un Enfoque Multiescalar. PhD dissertation, Pontificia Universidad Javeriana, Bogotá.Google Scholar
Sáenz-Jiménez, F., Parrado-Vargas, A., Pérez-Torres, J., Sheppard, J.K. and Ciri, F. (2016). Andean condor (Vultur gryphus) nesting in northeastern Colombia and differences in laying dates along the Andes. Ornitología Neotropical 27, 6771.Google Scholar
Santangeli, A., Buechley, E.R., Mammola, S. and Lambertucci, S.A. (2022). Priorities for research and action to prevent a New World vulture crisis. Biological Conservation 290, 109563.Google Scholar
Santangeli, A., Lambertucci, S.A., Margalida, A., Cancellario, T., Carucci, T., Botha, A. et al. (2024). The global contribution of vultures towards ecosystem services and sustainability – an experts’ perspective. iScience 27, 109925.CrossRefGoogle ScholarPubMed
Sharpe, C.J., Torres, D.A. and Rojas-Suárez, F. (2015). Cóndor, Vultur gryphus. In Rodríguez, J.P., García-Rawlins, A. and Rojas-Suárez, F. (eds), Libro Rojo de la Fauna Venezolana. Cuarta edición. Caracas: Provita y Fundación Empresas Polar.Google Scholar
Steven, R., Barnes, M., Garnett, S.T., Garrard, G., O’Connor, J., Oliver, J.L. et al. (2019). Aligning citizen science with best practice: Threatened species conservation in Australia. Conservation Science and Practice 1, e100.Google Scholar
Tulloch, A.I.T., Possingham, H.P., Joseph, L.N., Szabo, J. and Martin, T.G. (2013). Realising the full potential of citizen science monitoring programs. Biological Conservation 165, 128138.Google Scholar
Vargas, H., Narváez, F., Naveda-Rodríguez, A., Carrasco, L., Kohn, S., Utreras, V. et al. (2018) Segundo Censo Nacional del Cóndor Andino en Ecuador. Informe Técnico. Quito: Ministerio del Ambiente/The Peregrine Fund/Grupo del Nacional de Trabajo del Cóndor Andino en Ecuador.Google Scholar
Vehtari, A., Gelman, A. and Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing 27, 14131432.Google Scholar
Wallace, M.P. and Temple, S.A. (1982). Impacts of the 1982–1983 El Niño on population dynamics of Andean condors in Peru. Biotropica 20, 144150.Google Scholar
Wallace, R.B., Reinaga, A., Piland, N., Piana, R., Vargas, N., Zegarra, R.E. et al. (2022). Defining spatial conservation priorities for the Andean Condor (Vultur gryphus). Journal of Raptor Research 56, 116.Google Scholar
World Wildlife Fund for Nature (WWF) and Fundación Bioandina (2000). Taller de Especialistas del Cóndor: Hacia una Estrategia Regional para la Conservación del Cóndor. Mérida: WWF.Google Scholar
Zuluaga, S. and Ospina-Herrera, O. (2020). Reducción poblacional del cóndor andino (Vultur gryphus) en los Andes Centrales de Colombia: un llamado urgente para evitar su extinción local. Ornitologia Colombiana 18, 112.Google Scholar
Supplementary material: File

Sáenz-Jiménez et al. supplementary material 1

Sáenz-Jiménez et al. supplementary material
Download Sáenz-Jiménez et al. supplementary material 1(File)
File 49.7 KB
Supplementary material: File

Sáenz-Jiménez et al. supplementary material 2

Sáenz-Jiménez et al. supplementary material
Download Sáenz-Jiménez et al. supplementary material 2(File)
File 32.6 KB
Supplementary material: File

Sáenz-Jiménez et al. supplementary material 3

Sáenz-Jiménez et al. supplementary material
Download Sáenz-Jiménez et al. supplementary material 3(File)
File 29.3 KB