Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T13:24:00.052Z Has data issue: false hasContentIssue false

Conservation status of the threatened and endemic Rufous-throated Dipper Cinclus schulzi in Argentina

Published online by Cambridge University Press:  09 December 2019

NATALIA POLITI*
Affiliation:
INECOA (Instituto de Ecorregiones Andinas), CONICET– Universidad Nacional de Jujuy, Alberdi 47, (4600) Jujuy, Argentina.
SEBASTIÁN MARTINUZZI
Affiliation:
SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI53706, USA.
PATRICIA SARDINA ARAGÓN
Affiliation:
INECOA (Instituto de Ecorregiones Andinas), CONICET– Universidad Nacional de Jujuy, Alberdi 47, (4600) Jujuy, Argentina.
VERÓNICA MIRANDA
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, (4600) Jujuy, Argentina.
SEBASTIÁN ALBANESI
Affiliation:
IBN (Instituto de Biodiversidad Neotropical), CONICET–Universidad Nacional de Tucumán, Cúpulas Ciudad Universitaria, Horco Molle, (4000) Tucumán, Argentina.
PATRICIA PUECHAGUT
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Alberdi 47, (4600) Jujuy, Argentina.
VOLKER C. RADELOFF
Affiliation:
SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI53706, USA.
ANNA PIDGEON
Affiliation:
SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI53706, USA.
LUIS RIVERA
Affiliation:
INECOA (Instituto de Ecorregiones Andinas), CONICET– Universidad Nacional de Jujuy, Alberdi 47, (4600) Jujuy, Argentina.
*
*Author for correspondence; e-mail: [email protected]

Summary

The Rufous-throated Dipper Cinclus schulzi is endemic to the Southern Yungas of north-western Argentina and southern Bolivia. The species is categorised as ‘Vulnerable’ on the IUCN Red List on the basis of small population size and restricted range. The purpose of our study was to determine the distribution of potentially suitable habitat for the Rufous-throated Dipper, estimate its population size, and assess potential distribution within strict protected areas, in north-western Argentina. We surveyed 44 rivers in the Southern Yungas of Argentina from 2010 to 2013 to determine dipper density (i.e. the number of individuals detected per km surveyed). The dipper’s potential distribution was assessed using a maximum entropy modeling approach based on 31 occurrence points and eight bioclimatic and two topographic variables as predictors. The species is dependent on mountain forest rivers, so the potential distribution was restricted to rivers. We estimated dipper population size by multiplying density by the potential distribution along rivers. Finally, we calculated the extent of suitable habitat contained within the boundaries of Argentina´s National Parks. Dipper density was 0.94 ± 1.55 individuals/km. We estimate that within north-west Argentina there are ~2,815 km of river that are potential habitat, with an area of occupancy of 141 km2 and a population size of 2,657 ± 4,355 dippers. However, of this river extent, less than 5% is within National Parks. Our results highlight the need to create new and to enlarge existing National Parks that protect the potentially suitable habitat of the species. Although more information is needed for Bolivia, the country-level area of occupancy and population size of the dipper found in Argentina provides strong evidence that the IUCN Red List classification of this species as ‘Vulnerable’ is warranted.

Type
Research Article
Copyright
© BirdLife International, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellis, L. M., Rivera, L., Landi, M. and Politi, N. (2014) Distinct summer bird assemblages in two fragments of Polylepis forests in the Southern Yungas of Argentina. Ornit. Neotrop. 25: 195206.Google Scholar
BirdLife International (2019) Species factsheet: Cinclus schulzi. Downloaded from http://www.birdlife.org on 13/3/2019Google Scholar
Buckland, S. T., Marsden, S. J. and Green, R. E. (2008) Estimating bird abundance: making methods work. Bird Conserv. Internatn. 18: 91108.CrossRefGoogle Scholar
Butchart, S. H. M., Scharlemann, J. P. W., Evans, M., Quader, S., Arinaitwe, J., Bennun, L. A., Besançon, C., Boucher, T., Bomhard, B., Brooks, T. M., Burfield, I. J., Burgess, N. D., Clay, R. P., Crosby, M. J., Davidson, N. C.De Silva, N., Devenish, C., Dutson, G. C. L., Díaz Fernández, D. F., Fishpool, L. D. C., Foster, M., Hockings, M., Hoffmann, M., Knox, D., Larsen, F., Lamoreux, J. F., Loucks, C., May, I., Millett, J.Parr, M., Skolnik, B., Upgren, A. and Woodley, S. (2012) Protecting important sites for biodiversity contributes to meeting global conservation targets. PLoS ONE 7: e32529.CrossRefGoogle ScholarPubMed
Cabrera, A. L. and Willink, A. (1980) Biogeografía de América Latina. Washington, DC: Organization of American States.Google Scholar
Darwall, W. R., Holland, R. A., Smith, K. G., Allen, D., Brooks, E. G., Katarya, V., Yichuan, S., Clausnitzer, V., Cumberlidege, N., Cuttelod, A., Dijkstra, K. D. B., Diop, M. D., García, N., Skelton, P. H., Snoeks, J., Tweddle, D. and Vié, J. C. (2011) Implications of bias in conservation research and investment for freshwater species. Conserv. Lett. 4: 474482.CrossRefGoogle Scholar
Flores Bedregal, E., Herrera Carrasco, O. and Capriles, J. M. (2015) Avistamientos de Cinclus schulzi en la Cordillera de Sama, Bolivia. Hornero 30: 8993.Google Scholar
Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N. G., Lehmann, A. and Zimmermann, N. E. (2006) Using niche-based models to improve the sampling of rare species. Conserv. Biol. 20: 501511.CrossRefGoogle ScholarPubMed
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 19651978.CrossRefGoogle Scholar
IGN (2014) SIG del IGN (InstitutoGeográfico Nacional). Instituto Geográfico Nacional. Buenos Aires, Argentina [www document]. URL http://www.ign.gob.ar/sigGoogle Scholar
IUCN (2014) Guidelines for using the IUCN Red List Categories and Criteria. Version 11. Prepared by the Standards and Petitions Subcommittee. Available from http://www.iucnredlist.org/documents/RedListGuidelines.pdfGoogle Scholar
Kukkala, A. S. and Moilanen, A. (2012) Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. 88: 443464.CrossRefGoogle ScholarPubMed
Lomba, A., Pellissier, L., Randin, C., Vicente, J., Moreira, F., Honrado, J. and Guisan, A. (2010) Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biol. Conserv. 143: 26472657.CrossRefGoogle Scholar
McFarland, K. P., Rimmer, C. C., Goetz, J. E., Aubry, Y., Wunderle, J. M., Sutton, A.et al. (2013) A winter distribution model for Bicknell’s thrush (Catharus bicknelli), a conservation tool for a threatened migratory songbird. PLoS ONE 8: e53986.CrossRefGoogle Scholar
Margules, C. R. and Pressey, R. L. (2000) Systematic conservation planning. Nature 405: 243.CrossRefGoogle ScholarPubMed
Martínez, O., Gómez, I. Y. and Naoki, K. (2011) Nuevos reportes de aves amenazadas y poco conocidas en la cuenca de Bermejo (Tarija), al sur de Bolivia. Revista Boliviana de Ecología y Conservación Ambiental 29: 4-1–51.Google Scholar
Martinuzzi, S., Rivera, L., Politi, N., Bateman, B. L., de los Llanos, E. R., Lizárraga, L., de Bustos, M. S., Chalukian, S., Pidgeon, A. and Radeloff, V. C. (2018) Enhancing biodiversity conservation in existing land-use plans with widely available datasets and spatial analysis techniques. Environ. Conserv. 45: 252260.CrossRefGoogle Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. and Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853858.CrossRefGoogle ScholarPubMed
Ormerod, S. J. and Tyler, S. J. (1991) Exploitation of prey by a river bird, the Dipper Cinclus cinclus (L.), along acidic and circumneutral streams in upland Wales. Freshw. Biol. 25: 105116.CrossRefGoogle Scholar
Ormerod, S. J. and Tyler, S. J. (1992) Patterns of contamination by organochlorines and mercury in the eggs of two river passerines in Britain and Ireland with reference to individual PCB congeners. Environ. Pollut. 76: 233243.CrossRefGoogle ScholarPubMed
Ormerod, S. J. and Tyler, S. J. (2005) Family Cinclidae (Dippers). Pp. 332355 in: Del Hoyo, J., Elliott, A. and Christie, D. A., eds. Handbook of the birds of the world. Volume 10. Cuckoo-shrikes to thrushes . Barcelona, Spain: Lynx Edicions.Google Scholar
Ormerod, S. J., O’Halloran, J., Gribbin, S. D. and Tyler, S. J. (1991) The ecology of Dippers Cinclus cinclus in relation to stream acidity in upland Wales: breeding performance, calcium physiology and nesting growth. J. Appl. Ecol. 28: 419433.CrossRefGoogle Scholar
Osborn, S. A. (1999) Factors affecting the distribution and productivity of the American Dipper (Cinclus mexicanus) in western Montana: Does streamside development play a role?. Graduate Student Theses, Dissertations, & Professional Papers. 6913. https://scholarworks.umt.edu/etd/6913Google Scholar
Pearson, R. G., Raxworthy, C. J., Nakamura, M. and Peterson, A. T. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34: 102117.CrossRefGoogle Scholar
Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006) Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190: 231259.CrossRefGoogle Scholar
Phillips, S. J. (2017) A brief tutorial on MAXENT. Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/Google Scholar
Pidgeon, A. M., Rivera, L., Martinuzzi, S., Politi, N. and Bateman, B. (2015) Will representation targets based on area protect critical resources for the conservation of the Tucuman Parrot? Condor 117: 503517.CrossRefGoogle Scholar
Politi, N. and Rivera, L. (2019) Limitantes y avances para alcanzar el manejo forestal sustentable en las Yungas Australes. Ecol. Austral 29: 138145.CrossRefGoogle Scholar
Quinn, G. P. and Keough, M. J. (2002) Experimental design and data analysis for biologists. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D. and Cooke, S. J. (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94: 849873.CrossRefGoogle ScholarPubMed
Sardina Aragón, P. N. (2016) Modelo de selección y uso de hábitat del Mirlo de Agua (Cinclus schulzi) en ríos de montaña del noroeste argentino. Tucumán, Argentina: Ph.D. Thesis, Universidad Nacional de Tucumán.Google Scholar
Sardina Aragón, P. N., Politi, N. and Barquez, R. M. (2015) Nests and nest site characteristics of Rufous-Throated Dipper (Cinclus schulzi) in mountain rivers of northwestern Argentina. Waterbirds 38: 315321.CrossRefGoogle Scholar
Saunders, D. L., Meeuwig, J. J. and Vincent, A. C. J. (2002) Freshwater protected areas: strategies for conservation. Conserv. Biol. 16: 3041.CrossRefGoogle Scholar
Sousa-Silva, R., Alves, P., Honrado, J. and Lomba, A. (2014) Improving the assessment and reporting on rare and endangered species through species distribution models. Global Ecol. Conserv. 2: 226237.CrossRefGoogle Scholar
Strayer, D. L. and Dudgeon, D. (2010) Freshwater biodiversity conservation: recent progress and future challenges. J. N. Amer. Benthol. Soc. 29: 344358.CrossRefGoogle Scholar
Syfert, M. M., Joppa, L., Smith, M. J., Coomes, D. A., Bachman, S. P. and Brummitt, N. A. (2014) Using species distribution models to inform IUCN Red List assessments. Biol. Conserv. 177: 174184.CrossRefGoogle Scholar
Thompson, W., ed. (2004) Sampling rare or elusive species: concepts, designs, and techniques for estimating population parameters. Washington, DC: Island Press.Google Scholar
Thorn, J. S., Nijman, V., Smith, D. and Nekaris, K. A. I. (2009) Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers. Distrib. 15: 289298.CrossRefGoogle Scholar
Tyler, S. J. (1994) The Yungas of Argentina: in search of Rufous-throated Dipper Cinclus schulzi. Cotinga 2: 3840.Google Scholar
Tyler, S. J. and Ormerod, S. J. (1994) The dippers. San Diego, USA: Academic Press.Google Scholar
Tyler, S. J. and Tyler, L. (1996) The Rufous-throated Dipper Cinclus schulzi on rivers in north-west Argentina and southern Bolivia. Bird Conserv. Internatn. 6: 103116.CrossRefGoogle Scholar
VanDerWal, J., Shoo, L. P., Graham, C. and Williams, S. E. (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol. Modell. 220: 589594.CrossRefGoogle Scholar
Van Horne, B. (1983) Density as a misleading indicator of habitat quality. J. Wildl. Manage. 47: 893901.CrossRefGoogle Scholar
Waliczky, Z., Fishpool, L. D., Butchart, S. H., Thomas, D., Heath, M. F., Hazin, C., Donald, P. F., Kowalska, A., Dias, M. P. and Allinson, T. S. (2019) Important Bird and Biodiversity Areas (IBAs): their impact on conservation policy, advocacy and action. Bird Conserv. Internatn. 29: 199215.CrossRefGoogle Scholar
Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., et al. (2008) Effects of sample size on the performance of species distribution models. Divers. Distrib. 14: 763773.CrossRefGoogle Scholar