Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T10:35:46.821Z Has data issue: false hasContentIssue false

Altitudinal shifts in forest birds in a Mediterranean mountain range: causes and conservation prospects

Published online by Cambridge University Press:  09 December 2019

JOSÉ LUIS TELLERÍA*
Affiliation:
Department of Biodiversity, Ecology and Evolution, Universidad Complutense, 28040Madrid, Spain. Email: [email protected]

Summary

Mediterranean mountains are biodiversity hotspots where northern species occur surrounded by drier and warmer lowlands. In this context, global warming is pushing these species to higher elevations. This paper assesses whether forest birds have experienced a shift upwards over the elevation gradient in the last 35 years in the Guadarrama Mountains (600–2,400 m asl; central Spain). Alternatively, the paper tests whether the reported shifts are related to changes in forest structure resulting from rural abandonment and/or forest management. To do this, sampling carried out from 1976 to 1980 along the elevation gradient was repeated in 2014–2015. In addition, the habitat preferences of birds were used to test if the elevation shifts were related to changes in forest structure. Results show that the mean range position of birds associated with tree cover shifted downwards, a trend supported by an increase in tree-dependent birds at mid-elevations. These trends suggest that an increase in tree cover has buffered the altitudinal shifts of forest birds predicted by climate warming. Results also suggest that proper forest management may improve the resilience of forest bird communities to the pervasive effects of climate warming.

Type
Research Article
Copyright
© BirdLife International, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E.H., Gonzáleez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard, G., Running, S. W., Semerci, A. and Cobb, N. (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manag. 259: 660-684.CrossRefGoogle Scholar
Archaux, F. (2004) Breeding upwards when climate is becoming warmer: no bird response in the French Alps. Ibis 146: 138144.CrossRefGoogle Scholar
Barnagaud, J. Y., Devictor, V., Jiguet, F., Barbet-Massin, M., Le Viol, I. and Archaux, F. (2012) Relating habitat and climatic niches in birds. PLoS One 7: e32819.CrossRefGoogle ScholarPubMed
Barnagaud, J. Y., Barbaro, L., Hampe, H., Jiguet, F. and Archaux, F (2013) Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography 36: 1218-1226.CrossRefGoogle Scholar
Barredo, J. I., Mauri, A., Caudullo, G. and Dosio, A. (2019) Assessing shifts of Mediterranean and arid climates under RCP4.5 and RCP8.5 climate projections in Europe. Pp: 235-251 in Vilibić, I. I., Horvath, K., Palau, J. eds. Meteorology and climatology of the Mediterranean and Black Seas. Basel, Switzerland: Springer Nature.Google Scholar
Bengtsson, J., Nilsson, S. G., Franc, A. and Menozzi, P. (2000) Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecol. Manag 132: 39-50.CrossRefGoogle Scholar
Caro, T. M. and O’Doherty, G. (1999) On the use of surrogate species in conservation biology. Conserv. Biol. 13: 805-814.CrossRefGoogle Scholar
Chamberlain, D., Arlettaz, R. L., Caprio, E., Maggini, R., Pedrini, P., Rolando, A. and Zbinden, N. (2012) The altitudinal frontier in avian climate impact research. Ibis 154: 205-209.CrossRefGoogle Scholar
Clavero, M. and Brotons, L. (2010) Functional homogenization of bird communities along habitat gradients: accounting for niche multidimensionality. Global Ecol. Biogeogr. 19: 684-696.Google Scholar
Clavero, M., Villero, D. and Brotons, L. (2011) Climate change or land use dynamics: Do we know what climate change indicators indicate? PLoS One 6: e18581.CrossRefGoogle ScholarPubMed
Devictor, V., Van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D., Heliölä, J., Herrando, S., Julliard, R., Kuussaari, M., Lindström, Å., Reif, J., Roy, D., Schweiger, O., Settele, J., Stefanescu, C., Van Strien, A., Van Turnhout, C., Vermouzek, Z., WallisDeVries, M., Wynhoff, I. and Jiguet, F. (2012) Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Change 2: 121-124.CrossRefGoogle Scholar
Engler, R., Randin, C. F., Thuiller, W., Dullinger, S., Zimmermann, N. E., Araujo, M. B., Pearman, P. B., Le Lay, G., Piedallu, C., Albert, C. H., Choler, P., Coldea, G., De Lamo, X., Dirnböck, T., Gégout, J. C., Gomez-García, D., Grytnes, G. A., Heegaard, E., Hoistad, H., Nogués-Bravo, D., Normand, S., Puscas, M., Sebastià, M. T., Stanisci, A., Thurillat, J. P., Trivedi, M. R.., Vittoz, P. and Guisan, A., (2011) 21stcentury climate change threatens mountain flora unequally across Europe. Global Ecol. Biogeogr 17: 2330-2341.Google Scholar
Estrada, A., Morales-Castilla, I., Caplat, P. and Early, R. (2016) Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31: 190-203.CrossRefGoogle ScholarPubMed
Felton, A., Gustafsson, L., Roberge, J. M., Ranius, T., Hjältén, J., Rudolphi, J., Lindbladha, M., Wesliend, J., Riste, L., Brunet, J. and Felton, A.M. (2016) How climate change adaptation and mitigation strategies can threaten or enhance the biodiversity of production forests: Insights from Sweden. Biol. Conserv. 194: 11-20.CrossRefGoogle Scholar
Flousek, J., Telenský, T., Hanzelka, J. and Reif, J. (2015) Population trends of Central European montane birds provide evidence for adverse impacts of climate change on high‐altitude species. PLoS ONE 10: e0139465.CrossRefGoogle ScholarPubMed
García-Romero, A., Muñoz, J., Andrés, N. and Palacios, D. (2010) Relationship between climate change and vegetation distribution in the Mediterranean mountains: Manzanares Head valley, Sierra De Guadarrama (Central Spain). Climatic Change 100: 645-666.CrossRefGoogle Scholar
Gil-Tena, A., Brotons, L. and Saura, S. (2009) Mediterranean forest dynamics and forest bird distribution changes in the late 20th century. Global Ecol. Biogeogr 15: 474485.Google Scholar
Giménez‐Benavides, L., Escudero, A. and Iriondo, J. M. (2007) Reproductive limits of a late‐flowering high‐mountain Mediterranean plant along an elevational climate gradient. New Phytol. 173: 367-382.CrossRefGoogle ScholarPubMed
Giménez‐Benavides, L., Escudero, A., García‐Camacho, R., García‐Fernández, A., Iriondo, J. M., Lara‐Romero, C. and Morente‐López, J. (2018) How does climate change affect regeneration of Mediterranean high‐mountain plants? An integration and synthesis of current knowledge. Plant Biol. 20: 50-62.Google ScholarPubMed
Giorgi, F. (2006) Climate change hot‐spots. Geophys. Res. Lett. 33: (L08707).CrossRefGoogle Scholar
Gonzalez‐Hidalgo, J. C., Peña‐Angulo, D., Brunetti, M. and Cortesi, N. (2016) Recent trend in temperature evolution in Spanish mainland (1951–2010): from warming to hiatus. Int. J. Climatol. 36: 2405-2416.CrossRefGoogle Scholar
Gutiérrez-Illán, J., Gutiérrez, D. and Wilson, R. J. (2010) The contributions of topoclimate and land cover to species distributions and abundance: fine-resolution tests for a mountain butterfly fauna. Global Ecol. Biogeogr 19: 159-173.CrossRefGoogle Scholar
Hampe, A. and Petit, R. J. (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8. 461-467.CrossRefGoogle ScholarPubMed
Johnson, D. H. (2008) In defense of indices: the case of bird surveys. J. Wildl. Manage. 72: 857-868.CrossRefGoogle Scholar
Kuemmerle, T., Levers, C., Erb, K., Estel, S., Jepsen, M. R., Müller, D., Plutzar, C., Stürck, J., Verkerk, P. J., Verburg, P. H. and Reenberg, A. (2016) Hotspots of land use change in Europe. Environ. Res. Lett. 11(64020).CrossRefGoogle Scholar
La Sorte, F. A. and Jetz, W. (2010) Projected range contractions of montane biodiversity under global warming. P. Roy. Soc. B-Biol. Sci. 277: 3401-3410.Google ScholarPubMed
Lehikoinen, A., Brotons, L., Calladine, J., Campedelli, T., Escandell, V., Flousek, J., Grueneberg, C., Haas, F., Harris, S., Herrando, S., Husby, M., Jiguet, F., Kålås, J. A., Lindstrom, A, Lorrillière, R., Molina, B., Pladevall, C., Calvi, G., Sattler, T., Schmid, H., Sirkia, P.M., Teufelbauer, N. and Trautmann, S. (2019) Declining population trends of European mountain birds. Glob. Change Biol. 25: 577-588.CrossRefGoogle ScholarPubMed
Lenoir, J., Gégout, J. C., Guisan, A., Vittoz, P., Wohlgemuth, T., Zimmermann, N. E., Dullinger, S., Pauli, H., Willner, W. and Svenning, J.C. (2010) Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33: 295-303.Google Scholar
López, I. and Pardo, M. (2018) Socioeconomic Indicators for the Evaluation and Monitoring of Climate Change in National Parks: An Analysis of the Sierra de Guadarrama National Park (Spain). Environments 5: 116.CrossRefGoogle Scholar
Maggini, R., Lehmann, A., Kéry, M., Schmid, H., Beniston, M., Jenni, L. and Zbinden, N. (2011) Are Swiss birds tracking climate change? Detecting elevational shifts using response curve shapes. Ecol. Model. 222: 2132.CrossRefGoogle Scholar
Navarro, L. and Pereira, H., eds. (2015) Rewilding European landscapes. New York: Springer.Google Scholar
Nieto‐Sánchez, S., Gutiérrez, D. and Wilson, R. J. (2015) Long‐term change and spatial variation in butterfly communities over an elevational gradient: driven by climate, buffered by habitat. Divers. Distrib. 21: 950961.CrossRefGoogle Scholar
Pearson, R. G. and Dawson, T. P. (2003 Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol. Biogeogr 12: 361371.CrossRefGoogle Scholar
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I.C., …, Williams, S. E. (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355 (6332).CrossRefGoogle ScholarPubMed
Peters, M. K., Hemp, A., Appelhans, T., Becker, J. N., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S. W., Frederiksen, S. B., Gebert, F., Gerschlauer, F., Gütlein, A., Helbig-Bonitz, M., Hemp, C., Kindeketa, W. J., Kühnel, A., Mayr, A. V., Mwangomo, E., Ngereza, C., Njovu, H. K., Otte, I., Pabst, H., Renner, M., Röder, J., Rutten, G., Costa, D. S., Sierra-Cornejo, N., Vollstädt, M. G. R., Dulle, H. I., Eardley, C. D., Howell, K. M., Keller, A., Peters, R. S., Ssymank, A., Kakengi, V., Zhang, J., Bogner, C., Böhning-Gaese, K., Brand, R., Hertel, D., Huwe, B., Kiese, R., Kleyer, M., Kuzyakov, Y., Nauss, T., Schleuning, M., Tschapka, M., Fischer, M. and Steffan-Dewenter, I. (2019) Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568: s41586-019-1048-z.CrossRefGoogle ScholarPubMed
Popy, S., Bordignon, L. and Prodon, R. (2010) A weak upward elevational shift in the distributions of breeding birds in the Italian Alps. J. Biogeogr. 37: 5767.CrossRefGoogle Scholar
Regos, A., Domínguez, J., Gil-Tena, A., Brotons, L., Ninyerola, M. and Pons, X. (2016) Rural abandoned landscapes and bird assemblages: winners and losers in the rewilding of a marginal mountain area (NW Spain). Reg. Environ. Change 16: 199211.CrossRefGoogle Scholar
Reif, J. and Flousek, J. (2012) The role of species’ ecological traits in climatically driven altitudinal range shifts of central European birds. Oikos 121: 10531060.CrossRefGoogle Scholar
Rocchia, E., Luppi, M., Dondina, O., Orioli, V. and Bani, L. (2018) Can the effect of species ecological traits on birds’ altitudinal changes differ between geographic areas? Acta Oecol. 92: 2634.CrossRefGoogle Scholar
Ruiz‐Labourdette, D., Nogués‐Bravo, D., Ollero, H. S., Schmitz, M. F. and Pineda, F. D. (2013) Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J. Biogeogr. 39: 162176.CrossRefGoogle Scholar
Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huennke, L. F., Kackson, R. B., Kinzig, A., Leemans, R., Lodge, D., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H. and Wald, D. H. (2000) Global biodiversity scenarios for the year 2100. Science 287: 17701774.CrossRefGoogle ScholarPubMed
Sanders, N. J. and Rahbek, C. (2013) The patterns and causes of elevational diversity gradients. Ecography 35: 13.CrossRefGoogle Scholar
Sanz-Elorza, M., Dana, E. D., González, A. and Sobrino, E. (2003) Changes in the high-mountain vegetation of the Central Iberian Peninsula as a probable sign of climate warming. Ann. Bot-London 92: 273–28.CrossRefGoogle Scholar
Sekercioglu, C. H., Schneider, S. H., Fay, J. P. and Loarie, S. R. (2008) Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22: 140150.CrossRefGoogle ScholarPubMed
Seoane, J. and Carrascal, L. M. (2008) Interspecific differences in population trends of Spanish birds are related to habitat and climatic preferences. Global Ecol. Biogeogr 17: 111121.Google Scholar
Seoane, J., Bustamante, J. and Díaz-Delgado, R. (2004) Competing roles for landscape, vegetation, topography and climate in predictive models of bird distribution. Ecol. Model. 171: 209222.CrossRefGoogle Scholar
Sirami, C., Caplat, P., Popy, S., Clamens, A., Arlettaz, R., Jiguet, F., Btrotins, L. and Martin, J. L. (2016) Impacts of global change on species distributions: Obstacles and solutions to integrate climate and land use. Global Ecol. Biogeogr. 26: 385394.CrossRefGoogle Scholar
Sociedad Española de Ciencias Forestales (2010) Situación de los bosques y del sector forestal en España. Madrid: SECF.Google Scholar
Suggitt, A. J., Wilson, R. J., Isaac, N. J., Beale, C. M., Auffret, A. G., August, T., Bennie, J. J., Crick, H. Q. P., Duffield, S., Fox, R., Hopkins, J. J., Macgregor, N. A., Morecroft, M. D., Walker, K. J., Maclean, I. M. D. (2018) Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8: 713717.CrossRefGoogle Scholar
Suggitt, A. J., Gillingham, P. K., Hill, J. K., Huntley, B., Kunin, W. E., Roy, D. B. and Thomas, C. D. (2011) Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120: 18.CrossRefGoogle Scholar
Tellería, J. L. (1987) Biogeografía de la avifauna nidificante en España central. Ardeola, 34: 145166.Google Scholar
Tellería, J. L. and Santos, T. (1994) Factors involved in the distribution of forest birds in the Iberian Peninsula. Bird Study 41: 161169.CrossRefGoogle Scholar
Tellería, J. L., Baquero, R. and Santos, T. (2003) Effects of forest fragmentation on European birds: implications of regional differences in species richness. J. Biogeogr 30: 621628.CrossRefGoogle Scholar
Thuiller, W., Araújo, M. B. and Lavorel, S. (2004) Do we need land-cover data to predict species distributions in Europe? J. Biogeogr. 31: 353361.CrossRefGoogle Scholar
Tingley, M. W. and Beissinger, S. R. (2009) Detecting range shifts from historical species occurrences: new perspectives on old data. Trends Ecol. Evol, 24: 625633.CrossRefGoogle ScholarPubMed
Watson, J. E., Darling, E. S., Venter, O., Maron, M., Walston, J., Possingham, H. P., Dudley, N., Hockings, M., Barnes, M. and Brooks, T. M., (2016) Bolder science needed now for protected areas. Conserv. Biol. 30: 243248.CrossRefGoogle ScholarPubMed
Wilson, R. J., Gutiérrez, D., Gutiérrez, J. and Monserrat, V. J. (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Glob. Change Biol. 13: 18731887.CrossRefGoogle Scholar
Wilson, R. J., Gutiérrez, D., Gutiérrez, J., Martínez, D., Agudo, R. and Monserrat, V. (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol. Lett. 8: 11381146.CrossRefGoogle ScholarPubMed
Supplementary material: File

Tellería supplementary material

Tellería supplementary material

Download Tellería supplementary material(File)
File 21.2 KB