Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T11:38:50.342Z Has data issue: false hasContentIssue false

Vultures feeding on the dark side: current sanitary regulations may not be enough

Published online by Cambridge University Press:  13 June 2022

LOLA FERNÁNDEZ-GÓMEZ*
Affiliation:
Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Avda. de la Universidad, s/n, 03202 Elche, Alicante, Spain.
AINARA CORTÉS-AVIZANDA
Affiliation:
Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Avda. Reina Mercedes s/n, 41012, Seville, Spain.
ENEKO ARRONDO
Affiliation:
Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Avda. de la Universidad, s/n, 03202 Elche, Alicante, Spain.
MARINA GARCÍA-ALFONSO
Affiliation:
Department of Conservation Biology, Estación Biológica de Doñana (CSIC). C/. Américo Vespucio 26, 41092, Seville, Spain.
OLGA CEBALLOS
Affiliation:
UGARRA, Avda. Carlos III 1, 31002, Pamplona, Spain.
EUGENIO MONTELÍO
Affiliation:
Consultora CMC Sistemas de Mejora, S.L. C/Vara de Rey, 48. Entrpl. Dcha. 26002 Logroño (La Rioja), Spain.
JOSÉ A. DONÁZAR
Affiliation:
Department of Conservation Biology, Estación Biológica de Doñana (CSIC). C/. Américo Vespucio 26, 41092, Seville, Spain.
*
*Author for correspondence; email: [email protected]

Summary

It is widely acknowledged that the conservation of vultures, a group of birds threatened worldwide, requires the management of safe, high-quality human subsidies, free of potentially harmful toxic compounds. Additionally, in Europe, the supply of livestock carcasses is subject to current sanitary regulations. It is largely unknown how vultures use sources of food of different abundance, predictability, or different legal status and how individual features shape these preferences. To answer these questions, we took advantage of information yielded by 35 GPS-tagged adult Eurasian Griffon Vultures Gyps fulvus living in a region of northern Spain, which hosts one of the most important European populations. Our results indicated that vultures preferably used predictable feeding sites, such as carcass dumping sites, intensive farms and landfills which together account for the 62% of the observed feeding sites. Less than 10% of all observed sites had permission of authorities for the disposal of the carcasses. Interestingly, sites with large accumulations of carcasses were less used that those with intermediate amounts of food probably because of high intraspecific competition. In addition, sex and breeding status also played a role with males and breeding birds being more prone to visit the studied intensively managed feeding places. This vulture population is heavily dependent on food sources which are not under legal control where the birds could be at risk of intoxication and pathogen acquisition. Hence, current legal scenario allowing farmers to abandon carcasses in their exploitations seems insufficient. The future of vultures in highly anthropized regions is uncertain if interdictory regulations on the abandonment of carcasses of intensive livestock are applied. Additionally, conservation scenarios based on food subsidization must consider the effects of environmental and individual variability. We need science-based strategies ensuring the long-term viability of avian scavenger populations within a scenario of anthropized landscapes and livestock farming intensification.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlering, M. A., Maldonado, J. E., Eggert, L. S., Fleischer, R. C., Western, D. and Brown, J. L. (2013) Conservation outside Protected Areas and the Effect of Human-Dominated Landscapes on Stress Hormones in Savannah Elephants. Conserv. Biol. 27: 569575.CrossRefGoogle ScholarPubMed
Arkumarev, V., Dobrev, D., Stamenov, A., Terziev, N., Delchev, A. and Stoychev, S. (2021a) Seasonal dynamics in the exploitation of natural carcasses and supplementary feeding stations by a top avian scavenger. J. Ornithol. 162: 723735.CrossRefGoogle Scholar
Arkumarev, V., Dobrev, D., Stamenov, A., Terziev, N., Delchev, A. and Stoychev, S. (2021b) Using GPS and accelerometry data to study the diet of a top avian scavenger. Bird Study 67: 300310.CrossRefGoogle Scholar
Arnold, T. W. (2010) Uninformative parameters and model selection Using Akaike’s Information Criterion. J. Wildl. Manage. 74: 11751178.CrossRefGoogle Scholar
Arrondo, E., Moleón, M., Cortés-Avizanda, A., Jiménez, J., Beja, P., Sánchez-Zapata, J. A. and Donázar, J. A. (2018) Invisible barriers: Differential sanitary regulations constrain vulture movements across country borders. Biol. Conserv. 219: 4652.CrossRefGoogle Scholar
Arrondo, E., Navarro, J., Perez-García, J. M., Mateo, R., Camarero, P. R., Martin-Doimeadios, R. C. R., Jiménez-Moreno, M., Cortés-Avizanda, A., Navas, I., García-Fernández, A. J., Sánchez-Zapata, J. A. and Donázar, J. A. (2020a) Dust and bullets: Stable isotopes and GPS tracking disentangle lead sources for a large avian scavenger. Environ. Pollut. 266: 115022.CrossRefGoogle Scholar
Arrondo, E., Sanz-Aguilar, A., Pérez-García, J. M., Cortés-Avizanda, A., Sánchez-Zapata, J. A. and Donázar, J. A. (2020b) Landscape anthropization shapes the survival of a top avian scavenger. Biodivers. Conserv. 29: 14111425.Google Scholar
Barton, K. (2019) MuMIn: Multi-model inference, Version 1.43.6. 175. https://cran.r-project.org/web/packages/MuMIn/index.htmlGoogle Scholar
Bates, D., Maechler, M., Bolker, B. and Walker, S. (2015) Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Software 67: 148.CrossRefGoogle Scholar
Bildstein, K. L., Bechard, M. J., Farmer, C. and Newcomb, L. (2009) Narrow sea crossings present major obstacles to migrating Griffon Vultures Gyps fulvus. Ibis 151: 382391.CrossRefGoogle Scholar
Bjornstad, O. N. and Cai, J. (2019) Package ‘ncf.’ https://cran.r-project.org/web/packages/ncf/index.htmlGoogle Scholar
Blanco, G., Cortés-Avizanda, A., Frías, Ó., Arrondo, E. and Donázar, J. A. (2019) Livestock farming practices modulate vulture diet-disease interactions. Glob. Ecol. Conserv. 17:e00518.CrossRefGoogle Scholar
Blanco, G., Junza, A. and Barrón, D. (2017) Food safety in scavenger conservation: Diet-associated exposure to livestock pharmaceuticals and opportunist mycoses in threatened Cinereous and Egyptian vultures. Ecotoxicol. Environ. Saf. 135: 292301.CrossRefGoogle ScholarPubMed
Blázquez, M. and Sánchez-Zapata, J. A. (2009) The role of wild ungulates as a resource for the community of vertebrate. Pp. 308327 in Donázar, J. A., Margalida, A., and Campión, D., eds. Vultures, feeding stations and sanitary legislation: A conflict and its consequences from the perspective of conservation biology . Munibe Ciencias Naturales (Suppl. 29). Donostia: Sociedad de Ciencias Aranzadi.Google Scholar
Bolker, B. M. (2020) GLMM package.Google Scholar
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H. and White, J. S. S. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24: 127135.CrossRefGoogle ScholarPubMed
Bolnick, D. I., Svanbäck, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D. and Forister, M. L. (2003) The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161: 128.CrossRefGoogle ScholarPubMed
Burnham, K. P. and Anderson, D. R. (2002) Model selection and multimodel inference: a practical information-theoretic approach. 2nd edition. New York: Springer Science & Business Media.Google Scholar
Calenge, C. (2011) Home Range Estimation in R: the adehabitatHR Package. URL: http://cran.r-project.org/web/packages/adehabitatHR/vignettes/adehabitatHR.pdf.Google Scholar
Casas-Díaz, E., Cristòfol, C., Cuenca, R., Agustí, S., Carneiro, M., Marco, I., Lavín, S. and Margalida, A. (2016) Determination of fluoroquinolone antibiotic residues in the plasma of Eurasian griffon vultures (Gyps fulvus) in Spain. Sci. Total Environ. 557-558, 620626.CrossRefGoogle Scholar
Cortés-Avizanda, A., Almaraz, P., Carrete, M., Sánchez-Zapata, J. A., Delgado, A., Hiraldo, F. and Donázar, J. A. (2011) Spatial heterogeneity in resource distribution promotes facultative sociality in two trans-saharan migratory birds. PLoS One 6:e21016.CrossRefGoogle ScholarPubMed
Cortés-Avizanda, A., Blanco, G., Devault, T. L., Markandya, A., Virani, M. Z., Brandt, J. and Donázar, J. A. (2016) Supplementary feeding and endangered avian scavengers: Benefits, caveats, and controversies. Front. Ecol. Environ. 14: 191199.CrossRefGoogle Scholar
Cortés-Avizanda, A., Carrete, M. and Donázar, J. A. (2010) Managing supplementary feeding for avian scavengers: Guidelines for optimal design using ecological criteria. Biol. Conserv. 143: 17071715.CrossRefGoogle Scholar
Cortés-Avizanda, A., Carrete, M., Serrano, D. and Donázar, J. A. (2009) Carcasses increase the probability of predation of ground-nesting birds: A caveat regarding the conservation value of vulture restaurants. Anim. Conserv. 12: 8588.CrossRefGoogle Scholar
Cortés-Avizanda, A., Colomer, M. À., Margalida, A., Ceballos, O. and Donázar, J. A. (2015) Modeling the consequences of the demise and potential recovery of a keystone-species: Wild rabbits and avian scavengers in Mediterranean landscapes. Sci. Rep. 5: 112.Google ScholarPubMed
Cortés-Avizanda, A., Jovani, R., Carrete, M. and Donázar, J. A. (2012) Resource unpredictability promotes species diversity and coexistence in an avian scavenger guild: A field experiment. Ecology 93: 25702579.CrossRefGoogle Scholar
Cortés-Avizanda, A., McKeen, E., Ceballos, O., Pereira, H. M. and Martín-López, B. (2022) Social actors´perceptions of wildlife: Insights for the conservation of species in Mediterranean protected areas. Ambio 51: 9901000.CrossRefGoogle ScholarPubMed
Cramp, S. and Simmons, K. (1980) The birds of the Western Palearctic. 2nd edition. Oxford: Oxford University Press.Google Scholar
Del Moral, J. C. and Molina, B. (2018) El buitre leonado en España, población reproductora en 2018 y método de censo. Madrid: SEO/BirdLife.Google Scholar
Donázar, J. A. (1992) Muladares y basureros en la biologia y conservacion de las aves en España. Ardeola 39: 2940.Google Scholar
Donázar, J. A. and Fernández, C. (1990) Population trends of the griffon vulture Gyps fulvus in Northern Spain between 1969 and 1989 in relation to conservation measures. Biol. Conserv. 53: 8391.CrossRefGoogle Scholar
Donázar, J. A., Cortés-Avizanda, A. and Carrete, M. (2010) Dietary shifts in two vultures after the demise of supplementary feeding stations: Consequences of the EU sanitary legislation. Eur. J. Wildl. Res. 56: 613621.CrossRefGoogle Scholar
Donázar, J. A., Cortés-Avizanda, A., Ceballos, O., Arrondo, E., Grande, J. M. and Serrano, D. (2020) Epizootics and sanitary regulations drive long-term changes in fledgling body condition of a threatened vulture. Ecol. Indic. 113: 106188.CrossRefGoogle Scholar
Donázar, J. A., Margalida, A. and Campión, D., eds. (2009a) Vultures, feeding stations and sanitary legislation: a conflict and its consequences from the perspective of conservation biology . Munibe 29 (Suppl.). Sociedad de Ciencias Aranzadi, Donostia.Google Scholar
Donázar, J. A., Margalida, A., Carrete, M. and Sanchez-Zapata, J. A. (2009b) Too Sanitary for Vultures. Science 326:664.CrossRefGoogle Scholar
Donázar, J. A., Naveso, M. A., Tella, J. L. and Campión, D. (1996) Extensive grazing and raptors in Spain. Pp. 117149 in Farming and birds in Europe. The Common Agricultural Policy and its implications for bird conservation. San Diego, USA: Academic Press.Google Scholar
Gangoso, L., Cortés-Avizanda, A., Sergiel, A., Pudifoot, B., Miranda, F., Muñoz, J., Delgado-González, A., Moleón, M., Sánchez-Zapata, J. A., Arrondo, E. and Donázar, J. A. (2021) Living dangerously : stressed and aged avian scavengers in anthropized landscapes. Sci. Total Environ. 782 (146920): 112.Google Scholar
García-Alfonso, M., van Overveld, T., Gangoso, L., Serrano, D. and Donázar, J. A. (2020) Vultures and livestock: The where, when, and why of visits to farms. Animals 10: 120.CrossRefGoogle ScholarPubMed
García-Heras, M. S., Cortés-Avizanda, A. and Donázar, J. A. (2013) Who are we feeding? Asymmetric individual use of surplus food resources in an insular population of the endangered Egyptian vulture Neophron percnopterus. PLoS One 8: 17.CrossRefGoogle Scholar
Gelman, A. and Hill, J. (2007) Chapter 4. Linear regression: before and after fitting the model. Pp. 53-77 in Data analysis using regression and multilevel/hierarchical models. Cambridge, UK: Cambridge University Press.Google Scholar
Gilbert, M., Watson, R. T., Virani, M. Z., Oaks, J. L., Ahmed, S., Chaudhry, M. J. I., Arshad, M., Mahmood, S., Ali, A. and Khan, A. A. (2006) Rapid population declines and mortality clusters in three Oriental white-backed vulture Gyps bengalensis colonies in Pakistan due to diclofenac poisoning. Oryx 40: 388399.CrossRefGoogle Scholar
Graham, M. H. (2003) Statistical confronting multicollinearity in ecological. Ecology 84: 28092815.CrossRefGoogle Scholar
Gutiérrez-Cánovas, C., Moleón, M., Mateo-Tomás, P., Olea, P. P., Sebastián-González, E.and Sánchez-Zapata, J. A. (2020) Large home range scavengers support higher rates of carcass removal. Funct. Ecol. 34: 19211932.Google Scholar
Harel, R., Duriez, O., Spiegel, O., Fluhr, J., Horvitz, N., Getz, W. M., Bouten, W., Sarrazin, F., Hatzofe, O. and Nathan, R. (2016a) Decision-making by a soaring bird: time, energy and risk considerations at different spatio-temporal scales. Philos. Trans. R. Soc. B Biol. Sci. 371: 20150397.CrossRefGoogle Scholar
Harel, R., Horvitz, N. and Nathan, R. (2016b) Adult vultures outperform juveniles in challenging thermal soaring conditions. Sci. Rep. 6: 18.CrossRefGoogle Scholar
Hayward, L. S., Booth, R. K. and Wasser, S. K. (2010) Eliminating the artificial effect of sample mass on avian fecal hormone metabolite concentration. Gen. Comp. Endocrinol. 169: 117122.CrossRefGoogle ScholarPubMed
Hennig, C. (2019) Package “fpc”: Flexible Procedures for Clustering v. 2.2-8. 1–164.Google Scholar
Houston, D. C. (1974) Food searching in griffon vultures. Afr. J. Ecol. 12: 6377.CrossRefGoogle Scholar
Jørgensen, D. (2015) Rethinking rewilding. Geoforum 65: 482488.CrossRefGoogle Scholar
Lecina, S., Playán, E., Isidoro, D., Dechmi, F., Causapé, J. and Faci, J. M. (2005) Irrigation evaluation and simulation at the Irrigation District V of Bardenas (Spain). Agric. Water Manag. 73: 223245.CrossRefGoogle Scholar
Margalida, A. and Ogada, D. L. (2018) Old World vultures in a changing environment. Pp. 457471 in Birds of prey: Biology and conservation in the XXI century. Springer International.CrossRefGoogle Scholar
Margalida, A., Bogliani, G., Bowden, C. G. R., Donázar, J. A., Genero, F., Gilbert, M., Karesh, W. B., Kock, R., Lubroth, J., Manteca, X., Naidoo, V., Neimanis, A., Sánchez-Zapata, J. A., Taggart, M. A., Vaarten, J., Yon, L., Kuiken, T. and Green, R. E. (2014a) One Health approach to use of veterinary pharmaceuticals. Science 346: 12961298.CrossRefGoogle Scholar
Margalida, A., Carrete, M., Sánchez-Zapata, J. and Donázar, J. A. (2012) Good News for European Vultures. Science 305: 810.CrossRefGoogle Scholar
Margalida, A. and Colomer, M. À. (2012) Modelling the effects of sanitary policies on European vulture conservation. Sci. Rep. 2:753.CrossRefGoogle ScholarPubMed
Margalida, A., Colomer, M. À. and Oro, D. (2014) Man-induced activities modify demographic parameters in a long-lived species: Effects of poisoning and health policies. Ecol. Appl. 24: 436444.CrossRefGoogle Scholar
Margalida, A., Colomer, M. À. and Sanuy, D. (2011) Can wild ungulate carcasses provide enough biomass to maintain avian scavenger populations? an empirical assessment using a bio-inspired computational model. PLoS One 6:e20248.CrossRefGoogle ScholarPubMed
Margalida, A., Donázar, J. A., Carrete, M. and Sánchez-Zapata, J. A. (2010) Sanitary versus environmental policies: Fitting together two pieces of the puzzle of European vulture conservation. J. Appl. Ecol. 47: 931935.CrossRefGoogle Scholar
Margalida, A., Oliva-Vidal, P., Llamas, A. and Colomer, M. (2018) Bioinspired models for assessing the importance of transhumance and transboundary management in the conservation of European avian scavengers. Biol. Conserv. 228: 321330.CrossRefGoogle Scholar
Markandya, A., Taylor, T., Longo, A., Murty, M. N., Murty, S. and Dhavala, K. (2008) Counting the cost of vulture decline-An appraisal of the human health and other benefits of vultures in India. Ecol. Econ. 67: 194204.Google Scholar
MARM (2011) Libro Blanco de la transhumancia en España., A. y M. A. S. G. T. C. de P. Ministerio de Agricultura and Catálogo (eds.). Madird: Ministerio de Agricultura, Alimentación y Medio Ambiente.Google Scholar
Martin-Díaz, P., Cortés-Avizanda, A., Serrano, D., Arrondo, E., Sánchez-Zapata, J. A. and Donázar, J. A. (2020) Rewilding processes shape the use of Mediterranean landscapes by an avian top scavenger. Sci. Rep. 10: 112.CrossRefGoogle ScholarPubMed
Martín-Queller, E., Moreno-Mateos, D., Pedrocchi, C., Cervantes, J. and Martínez, G. (2010) Impacts of intensive agricultural irrigation and livestock farming on a semi-arid mediterranean catchment. Environ. Monit. Assess. 167: 423435.CrossRefGoogle ScholarPubMed
Mazerolle, M. J. (2019) AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.2-2.Google Scholar
McGrady, M. J., Karelus, D. L., Rayaleh, H. A., Sarrouf Willson, M., Meyburg, B. U., Oli, M. K. and Bildstein, K. (2018) Home ranges and movements of Egyptian Vultures Neophron percnopterus in relation to rubbish dumps in Oman and the Horn of Africa. Bird Study 65: 544556.CrossRefGoogle Scholar
Moleón, M., Sánchez-Zapata, J. A., Margalida, A., Carrete, M., Owen-Smith, N. and Donázar, J. A. (2014) Humans and scavengers: The evolution of interactions and ecosystem services. Bioscience 64: 394403.CrossRefGoogle Scholar
Moreno-Opo, R., Margalida, A., Arredondo, Á., Guil, F., Martín, M., Higuero, R., Soria, C. and Guzmán, J. (2010) Factors influencing the presence of the cinereous vulture Aegypius monachus at carcasses: food preferences and implications for the management of supplementary feeding sites. Wildl. Biol. 16: 2534.CrossRefGoogle Scholar
Moreno-Opo, R., Trujillano, A. and Margalida, A. (2015) Optimization of supplementary feeding programs for European vultures depends on environmental and management factors. Ecosphere 6: art127.CrossRefGoogle Scholar
Nathan, R., Spiegel, O., Fortmann-Roe, S., Harel, R., Wikelski, M. and Getz, W. M. (2012) Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: General concepts and tools illustrated for griffon vultures. J. Exp. Biol. 215: 986996.CrossRefGoogle ScholarPubMed
Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. and Martínez-Abraín, A. (2013) Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16: 15011514.CrossRefGoogle ScholarPubMed
Oro, D., Margalida, A., Carrete, M., Heredia, R. and Donázar, J. A. (2008) Testing the goodness of supplementary feeding to enhance population viability in an endangered vulture. PLoS One 3: e4084.CrossRefGoogle Scholar
Parra, J. and Tellería, J. L. (2004) The increase in the Spanish population of Griffon Vulture Gyps fulvus during 1989-1999: Effects of food and nest site availability. Bird Conserv. Internatn. 14: 3341.CrossRefGoogle Scholar
Pereira, H. M. and Navarro, L. M., eds. (2015) Rewilding European landscapes. Springer Link.CrossRefGoogle Scholar
Perino, A., Pereira, H. M., Navarro, L. M., Fernández, N., Bullock, J. M., Ceauşu, S., Cortés-Avizanda, A., Van Klink, R., Kuemmerle, T., Lomba, A., Pe’er, G., Plieninger, T., Benayas, J. M. R., Sandom, C. J., Svenning, J. C. and Wheeler, H. C. (2019) Rewilding complex ecosystems. Science 364: eeav5570.CrossRefGoogle ScholarPubMed
Plaza, P. I. and Lambertucci, S. A. (2017) How are garbage dumps impacting vertebrate demography, heath, and conservation? Glob. Ecol. Conserv. 12: 920.CrossRefGoogle Scholar
Plaza, P. I. and Lambertucci, S. A. (2018) More massive but potentially less healthy: Black vultures feeding in rubbish dumps differed in clinical and biochemical parameters with wild feeding birds. PeerJ 6: e4645.Google ScholarPubMed
R Core Team (2013) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Resheff, Y. S., Rotics, S., Harel, R., Spiegel, O. and Nathan, R. (2014) AcceleRater: A web application for supervised learning of behavioral modes from acceleration measurements. Mov. Ecol. 2: 17.CrossRefGoogle ScholarPubMed
Rodríguez, J. P., Beard, T. D. Jr., Bennett, E. M., Cumming, G. S., Cork, S. J., Agard, J., Dobson, A. P.and Peterson, G. D. (2006) Trade-offs across space, time, and ecosystem services. Ecol. Soc. 11: 28.CrossRefGoogle Scholar
Ruxton, G. D. and Houston, D. C. (2004) Obligate vertebrate scavengers must be large soaring fliers. J. Theor. Biol. 228: 431436.CrossRefGoogle ScholarPubMed
Sánchez-Zapata, J. A., Eguía, S., Blázquez, M., Moleón, M. and Botella, F. (2010) Unexpected role of ungulate carcasses in the diet of Golden Eagles Aquila chrysaetos in Mediterranean mountains. Bird Study 57: 352360.CrossRefGoogle Scholar
Sebastián-González, E., Moleón, M., Gibert, J. P., Botella, F., Mateo-Tomás, P., Olea, P. P., Guimarães, P. R. and Sánchez-Zapata, J. A. (2016) Nested species- rich networks of scavenging vertebrates support high levels of interspecific competition. Ecology 97: 95105.CrossRefGoogle ScholarPubMed
Sergio, F., Tavecchia, G., Tanferna, A., López Jiménez, L., Blas, J., De Stephanis, R., Marchant, T. A., Kumar, N. and Hiraldo, F. (2015) No effect of satellite tagging on survival, recruitment, longevity, productivity and social dominance of a raptor, and the provisioning and condition of its offspring. J. Appl. Ecol. 52: 16651675.Google Scholar
Spiegel, O., Harel, R., Getz, W. M. and Nathan, R. (2013) Mixed strategies of griffon vultures’ (Gyps fulvus) response to food deprivation lead to a hump-shaped movement pattern. Mov. Ecol. 1: 1-12.CrossRefGoogle ScholarPubMed
Strasser, E. H. and Heath, J. A. (2013) Reproductive failure of a human-tolerant species, the American kestrel, is associated with stress and human disturbance. J. Appl. Ecol. 50: 912919.CrossRefGoogle Scholar
Sugiura, N. (1978) Further analysis of the data by Akaike’s Information Criterion and the finite corrections. Commun. Stat. - Theory Methods 7: 1326.CrossRefGoogle Scholar
Tauler-Ametller, H., Hernández-Matías, A., Pretus, J. L. L. and Real, J. (2017) Landfills determine the distribution of an expanding breeding population of the endangered Egyptian Vulture Neophron percnopterus. Ibis 159: 757768.CrossRefGoogle Scholar
Tauler, H., Real, J., Hernández-Matías, A., Aymerich, P., Baucells, J., Martorell, C. and Santandreu, J. (2015) Identifying key demographic parameters for the viability of a growing population of the endangered Egyptian Vulture Neophron percnopterus. Bird Conserv. Internatn. 25: 426439.CrossRefGoogle Scholar
Tongue, A. D. W., Reynolds, S. J., Fernie, K. J. and Harrad, S. (2019) Flame retardant concentrations and profiles in wild birds associated with landfill: A critical review. Environ. Pollut. 248: 646658.Google ScholarPubMed
van Overveld, T., García-Alfonso, M., Dingemanse, N. J., Bouten, W., Gangoso, L., de la Riva, M., Serrano, D. and Donázar, J. A. (2018) Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8: 113.CrossRefGoogle Scholar
Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M. A. and Watson, J. E. (2016) Global terrestial Human Footprint maps for 1993 and 2009. Sci. Data 3: 160067.CrossRefGoogle Scholar
Virani, M. Z., Kendall, C., Njoroge, P. and Thomsett, S. (2011) Major declines in the abundance of vultures and other scavenging raptors in and around the Masai Mara ecosystem, Kenya. Biol. Conserv. 144: 746752.Google Scholar
Vitali, A., Segnalini, M., Bertocchi, L., Bernabucci, U., Nardone, A. and Lacetera, N. (2009) Seasonal pattern of mortality and relationships between mortality and temperature-humidity index in dairy cows. J. Dairy Sci. 92: 37813790.CrossRefGoogle ScholarPubMed
Wasser, S. K., Houston, C. S., Koehler, G. M., Cadd, G. G. and Fain, S. R. (1997) Techniques for application of faecal DNA methods to field studies of Ursids. Mol. Ecol. 6: 10911097.Google ScholarPubMed
Watson, R. T., Gilbert, M., Oaks, J. L. and Virani, M. (2004) The collapse of vulture populations in South Asia. Biodiversity 5: 37.CrossRefGoogle Scholar
Wink, M., Sauer-Gürth, H., Martinez, F., Doval, G., Blanco, G.and Hatzofe, O. (1998) The use of (GACA)4 PCR to sex old world vultures (Aves: Accipitridae). Mol. Ecol. 7: 779782.CrossRefGoogle Scholar
Xirouchakis, S. M. and Poulakakis, N. (2008) Biometrics, sexual dimorphism and Gender Determination of Griffon Vultures Gyps fulvus from Crete. Ardea 96: 9198.Google Scholar
Supplementary material: File

Fernández-Gómez et al. supplementary material

Fernández-Gómez et al. supplementary material

Download Fernández-Gómez et al. supplementary material(File)
File 1.5 MB