Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T17:51:26.411Z Has data issue: false hasContentIssue false

Survival and extinction of breeding landbirds on San Cristóbal, a highly degraded island in the Galápagos

Published online by Cambridge University Press:  19 August 2019

MICHAEL DVORAK
Affiliation:
BirdLife Austria, 1070 Vienna, Austria.
BIRGIT FESSL*
Affiliation:
Charles Darwin Research Station, Charles Darwin Foundation, Av. Charles Darwin s/n, Puerto Ayora, Santa Cruz, Galápagos, Ecuador.
ERWIN NEMETH
Affiliation:
BirdLife Austria, 1070 Vienna, Austria.
DAVID ANCHUNDIA
Affiliation:
Charles Darwin Research Station, Charles Darwin Foundation, Av. Charles Darwin s/n, Puerto Ayora, Santa Cruz, Galápagos, Ecuador.
JAVIER COTÍN
Affiliation:
Charles Darwin Research Station, Charles Darwin Foundation, Av. Charles Darwin s/n, Puerto Ayora, Santa Cruz, Galápagos, Ecuador.
CHRISTIAN H. SCHULZE
Affiliation:
Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria.
WASHINGTON TAPIA
Affiliation:
Galapagos Conservancy, Giant Tortoise Restoration Initiative, Santa Cruz, Galápagos Islands, Ecuador.
BEATE WENDELIN
Affiliation:
Office for Landscape Ecology, 7122 Gols, Austria.
*
*Author for correspondence; email: [email protected]

Summary

We documented the consequences of large-scale habitat loss on a community of Galápagos native bird species on San Cristóbal island, based on point counts conducted between 2010 and 2017. Surprisingly, despite considerable habitat change and a variety of other threats, the landbirds of San Cristóbal have fared much better than on the neighbouring islands Floreana or Santa Cruz. While two species went extinct very soon after human colonisation, the majority have adapted well to subsequent vegetation change and habitat loss. The endemic San Cristóbal Mockingbird Mimus melanotis is more widespread than previously thought and its population seems to be stable since the 1980s. We thus propose a change in IUCN classification from ‘Endangered’ to ‘Near threatened’. We present evidence gained by interviewing locals which suggests that a small population of the Least Vermilion Flycatcher Pyrocephalus dubius, classified as ‘Extinct’ by BirdLife International, may have persisted until very recently. Although extensive searches in 2018 and 2019 were unsuccessful, the possibility remains that a few birds may have survived in remote parts of the island. Further searches that involve the general public and other interested parties are therefore deemed necessary.

Type
Research Article
Copyright
© BirdLife International, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BirdLife International (2016) Mimus melanotis. The IUCN Red List of Threatened Species 2016: e.T22711078A94276713. Downloaded on 09 July 2018.Google Scholar
BirdLife International (2017) Pyrocephalus dubius (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2017: e.T103682916A119211257. Downloaded on 09 July 2018.Google Scholar
Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L. and Gaston, K. J. (2004) Avian extinction and mammalian introductions on oceanic islands. Science 305: 19551958.CrossRefGoogle ScholarPubMed
Buckland, S. T., Anderson, D., Burnham, K.Laake, J., Thomas, J. and Borchers, D. (2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford: Oxford University Press.Google Scholar
Bulgarella, M., Quiroga, M. A. and Heimpel, G. E. (2018) Additive negative effects of Philornis nest parasitism on small and declining Neotropical bird populations. Bird Conserv. Internatn. 29: 122.Google Scholar
Bush, M., Restrepo, A. and Collins, A. (2014) Galapagos history, restoration, and a shifted baseline. Restor. Ecol. 22: 296298.CrossRefGoogle Scholar
Butchart, S. H. M., Stattersfield, A. J. and Brooks, T. M. (2006) Going or gone: defining ‘Possibly Extinct’ species to give a truer picture of recent extinctions. Bull. B.O.C. 126A: 724.Google Scholar
Carmi, O., Witt, C. C., Jaramillo, A. and Dumbacher, J. P. (2016) Phylogeography of the vermilion flycatcher species complex: multiple speciation events, shifts in migratory behavior, and an apparent extinction of a Galapagos-endemic bird species. Mol. Phylogenet. Evol. 102: 152173.CrossRefGoogle Scholar
Carrión-Avilés, P. (2015) The use of formic acid for controlling Galápagos land bird nest infestation by the avian parasitic fly (Philornis downsi): an experimental study. MSc thesis. Bremen: University of Bremen.Google Scholar
Causton, C., Cunninghame, F. and Tapia, W. (2013) Management of the avian parasite Philornis downsi in the Galápagos Islands: A collaborative and strategic action plan. Pp. 167173 in Galápagos Report 2011-2012. Puerto Ayora, Galápagos, Ecuador: GNPS, GCREG, CDF and GC.Google Scholar
Cheke, A. and Hulme, J. (2008) Lost land of the dodo . London: T & AD Poyser Ltd.Google Scholar
Cimadom, A., Ulloa, A., Meidl, P., Zöttl, M., Fessl, B., Nemeth, E., Dvorak, M., Cunninghame, F. and Tebbich, S. (2014) Invasive parasites, habitat change and heavy rainfall reduce breeding success in Darwin’s finches. PLoS ONE 9: e107518.10.1371/journal.pone.0107518CrossRefGoogle ScholarPubMed
Cisneros-Heredia, D. (2018) The hitchhiker wave: Non-native small terrestrial vertebrates in the Galapagos. In Understanding Invasive Species in the Galapagos Islands. Pp. 95139 in Torres, M. and Mena, C., eds. Social and Ecological Interactions in the Galapagos Islands. New York: Springer International Publishing AG.Google Scholar
Coppois, G. and Wells, S. (1987) Threatened Galápagos snails. Oryx 21: 236241.CrossRefGoogle Scholar
Curry, R. (1986) Whatever happened to the Floreana mockingbird? Noticias de Galápagos - Galápagos Research 43: 1315.Google Scholar
Curry, R. (1989) Geographic variation in social organization of Galápagos (Ecuador) Mockingbirds: ecological correlates of group territoriality and cooperative breeding. Behav. Ecol. Sociobiol. 25: 147160.CrossRefGoogle Scholar
Donald, P. F., Collar, N. J., Marsden, S. J. and Pain, D. J. (2013) Rarity and extinction on islands. Pp. 94109 in Facing extinction. The world´s rarest birds and the race to save them. London: T & A D Poyser.Google Scholar
Dvorak, M., Fessl, B., Nemeth, E., Kleindorfer, S. and Tebbich, S. (2012) Distribution and abundance of Darwin’s finches and other land birds on Santa Cruz Island, Galápagos: evidence for declining populations. Oryx 46: 19.CrossRefGoogle Scholar
Dvorak, M., Nemeth, E., Wendelin, B., Herrera, P., Mosquera, D., Anchundia, D., Sevilla, C., Tebbich, S. and Fessl, B. (2017) Conservation status of landbirds on Floreana: the smallest inhabited Galápagos Islands. J. Field Ornithol. 88: 132145.CrossRefGoogle Scholar
Fessl, B., Anchundia, D., Carrion, J., Cimadom, A., Cotin, J., Cunninghame, F., Dvorak, M., Mosquera, D., Nemeth, E., Sevilla, C., Tebbich, S., Wendelin, B. and Causton, C. (2017) Galapagos landbirds (passerines, cuckoos and doves): status, threats and knowledge gaps. In Galapagos Report 2015-2016. Puerto Ayora, Galapagos, Ecuador: GNPS, GCREG, CDF and GC.Google Scholar
Fessl, B., Heimpel, G. E and Causton, C. E. (2018) Invasion of an avian nest parasite, Philornis downsi, to the Galapagos Islands: colonization history, adaptations to novel ecosystems, and conservation challenges. Pp. 213266 in Parker, P. G., ed. Disease ecology: Galapagos birds and their parasites. Cham: Springer.CrossRefGoogle Scholar
Fisher, A. K. and Wetmore, A. (1931) Report on birds recorded by the Pinchot expedition of 1929 to the Caribbean and Pacific. Proc. U.S. Nat. Mus. 79: 166.CrossRefGoogle Scholar
Gifford, E. W. (1919) Expedition of the California Academy of Sciences to the Galápagos Islands, 1905-1906. XIII Field notes on the land birds of the Galápagos Islands and of Cocos Island, Costa Rica. Proc. Calif. Acad. Sci., fourth ser. 4, 2: 189258.Google Scholar
Grant, P. R., Grant, B. R., Petren, K. and Keller, L. F. (2005) Extinction behind our backs: the possible fate of one of the Darwin’s finch species on Isla Floreana, Galápagos. Biol. Conserv. 122: 499503.CrossRefGoogle Scholar
Harris, M. (1973) The Galápagos avifauna. The Condor 75: 265278.CrossRefGoogle Scholar
Hickman, J. (1985) The enchanted islands: the Galápagos discovered. Shropshire, UK: Anthony Nelson.Google Scholar
Huttel, C. (1986) Zonificación bioclimatológica y formaciones vegetales en las Islas Galápagos. Cult. Rev. Banco Cent. Ecuador 8: 221233.Google Scholar
Huyvaert, K. (2018) Filling the gaps: improving sampling and analysis of disease surveillance data in Galápagos. Pp. 293304 in Parker, P. G., ed. Disease ecology: Galápagos birds and their parasites. Cham: Springer.CrossRefGoogle Scholar
INEC (2015) Fasciculo Provincial Galápagos. Resultados del Censo 2015. Instituto Nacional de Estadisticas y Censos, Quito, Ecuador.Google Scholar
IUCN (2012) IUCN Red List Categories and Criteria: Version 3.1. Second edition. Gland, Switzerland and Cambridge, UK.Google Scholar
IUCN (2018) The IUCN Red List of Threatened Species. Version 2018-1. http://www.iucnredlist.org. Downloaded on 05 July 2018.Google Scholar
Johnson, T. H. and Stattersfield, A. J. (1990) A global review of island endemic birds. Ibis 132: 167180.CrossRefGoogle Scholar
Konecny, M. J. (1987) Food habits and energetics of feral house cats in the Galápagos Islands. Oikos 50: 2432.CrossRefGoogle Scholar
Koop, J. A. H., Huber, S. K., Laverty, S. M. and Clayton, D. H. (2011) Experimental demonstration of the fitness consequences of an introduced parasite of Darwin’s Finches. PLoS ONE 6: e19706.CrossRefGoogle ScholarPubMed
Mauchamp, A. (1997) Threats from alien plant species in the Galápagos Islands. Conserv. Biol. 11: 260263.CrossRefGoogle Scholar
Mauchamp, A. and Atkinson, R. (2010) Rapid, recent and irreversible habitat loss: Scalesia forest on the Galápagos Islands. Pp. 108112 in Galapagos Report 2009-2010. Puerto Ayora, Galapagos, Ecuador: GNPS, GCREG, CDF and GC.Google Scholar
Padilla, L. R., Gottdenker, N., Deem, S. L. and Cruz, M. (2018) Domestic and peridomestic animals in Galápagos: health policies and practices. Pp. 269292 in Parker, P. G., ed. Disease ecology: Galápagos birds and their parasites. Cham: Springer.10.1007/978-3-319-65909-1_10CrossRefGoogle Scholar
Padilla, L. R., Santiago-Alarcon, D., Merkel, J., Miller, R E. and Parker, P. G. (2004) Survey for Haemoproteus spp., Trichomonas gallinae, Chlamydophila psittaci, and Salmonella spp. in Columbiformes from the Galapagos Islands. J. Zoo Wildl. Med. 35: 6064.10.1638/03-029CrossRefGoogle ScholarPubMed
Parker, P. G., Miller, R. E. and Goodman, S. J. (2018) Collaboration and the politics of conservation. Pp. 305324 in Parker, P. G., ed. Disease ecology: Galápagos birds and their parasites. Cham: Springer.CrossRefGoogle Scholar
Petren, K., Grant, P. R., Grant, B. R., Clack, A. A. and Lescano, N. V. (2010) Multilocus genotypes from Charles Darwin’s finches: biodiversity lost since the voyage of the Beagle. Phil. Trans. R. Soc. Lond. B Biol. Sci. 365: 10091018.CrossRefGoogle ScholarPubMed
Phillips, R. B., Wiedenfeld, D. A. and Snell, H. L. (2012) Current status of alien vertebrates in the Galápagos Islands: invasion history, distribution, and potential impacts. Biol. Invasions 14: 461480.CrossRefGoogle Scholar
R Core Team (2017) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.Google Scholar
Rosenberg, D. K. (1990) The impact of introduced herbivores on the Galápagos rail (Laterallus spilonotus). Monogr. Syst. Bot. Missouri Bot. Gard. 32: 169178.Google Scholar
Schluter, D. and Grant, P. R. (1984) Ecological correlates of morphological evolution in a Darwin’s Finch Geospiza difficilis. Evolution 38: 856869.CrossRefGoogle Scholar
Snell, H. M., Stone, P. A. and Snell, H. L. (1996) A summary of geographical characteristics of the Galápagos Islands. J. Biogeogr. 23: 619624.CrossRefGoogle Scholar
Steadman, D. W. (1986) Holocene vertebrate fossils from Isla Floreana, Galápagos. Smithsonian Contrib. Zool. 413: I-IV, 1104.CrossRefGoogle Scholar
Steadman, D. W. (1995) Prehistoric extinctions of Pacific Island birds: biodiversity meets zooarchaeology. Science 267: 11231131.CrossRefGoogle ScholarPubMed
Steadman, D. W. (2006) Extinction and biogeography of tropical Pacific birds. Chicago: University of Chicago Press.Google Scholar
Steadman, D. W. and Zousmer, S. (1988) Galápagos, discovery on Darwin’s Islands . Washington DC: Smithsonian Institution Press.Google Scholar
Sulloway, F. (1982) The Beagle collections of Darwin’s finches (Geospizinae). Bull. Br. Mus. nat. Hist. (Zool.) 43: 4994.Google Scholar
Swarth, H. (1931) The avifauna of the Galápagos Islands. Occas. Papers Calif. Acad. Sci. 18: 1299.Google Scholar
Szabo, J. K., Khwaja, N., Garnett, S. T. and Butchart, S. H. M. (2012) Global patterns and drivers of avian extinctions at the species and subspecies level. PLoS ONE 7: e47080.CrossRefGoogle ScholarPubMed
Thomas, L., Laake, J. L., Strindberg, S. and Marques, F. F. C. (2006) User’s Guide. DISTANCE 5.0 Release 2. St Andrews, UK: Research Unit for Wildlife Population Assessment. University of St Andrews.Google Scholar
Vargas, H. (1996) What is happening with the avifauna of San Cristobal? Not. Galápagos - Galápagos Res. 57: 2324.Google Scholar
Walters, M. (2016) Extinct birds of Hawai´i. Honolulu: Mutual Publishing.Google Scholar
Watson, J., Trueman, M., Tufet, M., Henderson, S. and Atkinson, R. (2010) Mapping terrestrial anthropogenic degradation on the inhabited islands of the Galápagos archipelago. Oryx 44: 7982.CrossRefGoogle Scholar
Wiedenfeld, D. A. and Jiménez-Uzcátegui, G. (2008) Critical problems for bird conservation in the Galápagos Islands. Cotinga 29: 2227.Google Scholar
Wilkinson, S. R., Naeth, M. A. and Schmiegelow, F. K. A. (2005) Tropical forest restoration within Galápagos National Park: application of a state-transition model. Ecol. Soc. 10: 28. [online], URL: http://www.ecologyandsociety.org/vol10/iss1/art28/.CrossRefGoogle Scholar
Supplementary material: File

Dvorak et al. supplementary material

Table S1 and Figure S1

Download Dvorak et al. supplementary material(File)
File 929.2 KB