Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T04:11:07.522Z Has data issue: false hasContentIssue false

Range-wide and regional distribution of the Western Tragopan Tragopan melanocephalus and effects of disturbance on local abundances

Published online by Cambridge University Press:  11 July 2022

Akbar Shah
Affiliation:
PMAS-Arid Agriculture University Rawalpindi, Islamabad, Pakistan
Amjad Rashid Kayani
Affiliation:
PMAS-Arid Agriculture University Rawalpindi, Islamabad, Pakistan
Flora Ihlow
Affiliation:
Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
Muhammad Sajid Nadeem
Affiliation:
PMAS-Arid Agriculture University Rawalpindi, Islamabad, Pakistan
Tariq Mahmood
Affiliation:
PMAS-Arid Agriculture University Rawalpindi, Islamabad, Pakistan
Safiqul Islam
Affiliation:
Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany Division of Systematic Zoology, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
Alexander E. Hausmann
Affiliation:
Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
Martin Päckert*
Affiliation:
Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
*
*Author for correspondence: Martin Päckert, Email: [email protected]

Summary

The Western Tragopan Tragopan melanocephalus is endemic to the Western Himalayas and currently listed as ‘Vulnerable’ on the IUCN Red List which also emphasizes a data deficiency regarding its distribution and population size. With this study we provide new data from the Palas Valley, northern Pakistan and deliver a range wide estimate of the species current, past, and future potential distribution as derived from environmental niche models. In the Palas Valley, Western Tragopans occupied different summer habitats on north-facing slopes and winter habitats on south-facing slopes. A quantitative estimate of local populations in six side valleys was inferred from individual call-count surveys during two breeding seasons (April and May 2017, 2018) and disturbance factors were evaluated from information of local people provided in questionnaires. Generalized-linear models (GLMs) showed a significant effect of disturbance factors on Western Tragopans, i.e. local abundances decreased with increasing disturbance from livestock, collectors and hunters visiting the area. This effect was visible across survey years and at both, south- as well as north-facing slopes. While the known distributional range of the Western Tragopan is small and fragmented, our niche models inferred climatically suitable space between Himachal Pradesh and northwestern Pakistan to be more continuous. Given the species sensitivity to disturbance, these findings indicate that the observed fragmentation of the current range might also be attributed to habitat transformation or anthropogenic disturbance rather than climatic suitability. During the Last Glacial Maximum (LGM) T. melanocephalus was probably restricted to small forest refugia, whereas projections onto eleven future climate simulations were inconclusive with the majority suggesting that climatically suitable space for T. melanocephalus will likely expand in response to anthropogenic climate change. In conclusion, we recommend that future conservation measures should be planned with regard to the species’ sensitivity to anthropogenic disturbances.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, R., Sharma, N., Pacchnanda, U., Suhai, I., Deb, K., Bhatnagar, Y. V. and Kaul, R. (2017) Distribution and conservation status of the western tragopan Tragopan melanocephalus in Jammu and Kashmir, India. Curr. Sci. 112: 19481953.CrossRefGoogle Scholar
Ali, H., Akram, U., Abbas, S., Ahmed, M. S., Qamer, F. M., Khan, B., Awan, M. N., Ali, Z., Chaudry, A. A., Saghir, A. and Nagai, M. (2015) Predicting the potential habitat and distribution of Western Tragopan (Tragopan melanocephalus) in selected areas of AJ&K, Pakistan: a Maxent Modelling approach. J. Anim. Plant. Sci. 25: 318323.Google Scholar
Ali, S. and Ripley, S. D. (1983) Handbook of the birds of India and Pakistan. New Delhi, Oxford, New York: Oxford University Press.Google Scholar
Awan, M. N. and Buner, F. (2014) Conservation of the Western Tragopan (Tragopan melanocephalus) around Salkhala Game Reserve, Azad Kashmir, Pakistan. Birding ASIA 21: 107111.Google Scholar
Awan, M. N., Buner, F. and Kingdon, N. (2016) A review of published and unpublished surveys of a red-listed flagship species, the Western Tragopan Tragopan melanocephalus in Azad Jammu and Kashmir, Pakistan. Bird Conserv. Internatn. 26: 380395.CrossRefGoogle Scholar
Awan, M. N., Geldmann, J., Buner, F., Saqib, Z., Pervez, A., Mahmood, Q., Hashem, A., Al-Arjani, A. F., Alqarawi, A. A., Adh Allah, E. F. and Akbar, T. A. (2021) The effectiveness of protected areas in conserving globally threatened Western Tragopan Tragopan melanocephalus. Animals 11: 680.CrossRefGoogle ScholarPubMed
Behrensmeyer, A. K., Damuth, J. D., diMichele, W. A., Potts, R., Sues, H. D. and Wing, S. L. (eds) (1992) Terrestrial ecosystems through time – evolutionary paleoecology of terrestrial plants and animals. Chicago and London: University of Chicago Press.Google Scholar
Bhattacharya, T., Sathyakumar, S. and Rawat, G. S. (2009) Distribution and abundance of Galliformes in response to anthropogenic pressures in the buffer zone of Nanda Devi Biosphere Reserve. Int. J. Galliformes Conserv. 1: 7884.Google Scholar
BirdLife International (2001) Threatened birds of Asia: the BirdLife International Red Data Book. Cambridge, UK: Birdlife International.Google Scholar
BirdLife International (2017) Tragopan melanocephalus (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2017: e.T22679147A112467383. https://doi.org/10.2305/IUCN.UK.2017-1.RLTS.T22679147A112467383.en. Downloaded on 19 May 2021.CrossRefGoogle Scholar
BirdLife International (2020) Species factsheet: Tragopan melanocephalus. http://www.birdlife.org. Accessed on 15 April 2020Google Scholar
Braunisch, V., Coppes, J., Arlettaz, R., Suchant, R., Schmid, H. and Bollmann, K. (2013) Selecting from correlated climate variables: A major source of uncertainty for predicting species distributions under climate change. Ecography 36: 971983.CrossRefGoogle Scholar
DelHoyo, J. and Collar, N. J. (2014) HBW and BirdLife International illustrated checklist of the Birds of the World. Volume 1: Non-passerines. Barcelona, Spain and Cambridge, UK: Lynx Edicions and BirdLife International.Google Scholar
Dettenmaier, S. J., Messmer, T. A., Hovick, T. J. and Dahlgren, D. K. (2017) Effects of livestock grazing on rangeland biodiversity: A meta-analysis of grouse populations. Ecol. Evol. 7: 76207627.CrossRefGoogle ScholarPubMed
Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., García Marquéz, J. R., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüler, T., McClean, C., Osborne, P. E., Reineking, B., Schrörder, B., Skidmore, A. K., Zurell, D. and Lautenbach, S. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 2746.CrossRefGoogle Scholar
Duke, G. (1991) Using call counts to compare western tragopan populations in Pakistan’s Himalaya. Pp. 116122 in Hill, D. A., Garson, P. J. and Jenkins, D., eds. Pheasants in Asia 1989. Readings, UK: World Pheasant Association.Google Scholar
Elith, J., Kearney, M., and Phillips, S. (2010) The art of modelling range-shifting species. Methods Ecol. Evol. 1: 330342.CrossRefGoogle Scholar
Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Le, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, C., Nakazawa, Y., Overton, J. McC., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S. and Zimmermann, N. E. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129151.CrossRefGoogle Scholar
Elsen, P. R., Kalyanaraman, R., Ramesh, K. and Wilcove, D. (2017) The importance of agricultural lands for Himalayan birds in winter. Conserv. Biol. 31: 416426.CrossRefGoogle ScholarPubMed
Favre, A., Päckert, M., Pauls, S. U., Jähnig, S. C., Uhl, D., Michalak, I. and Muellner‐Riehl, A. N. (2015) The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90: 236253.CrossRefGoogle ScholarPubMed
Fitzpatrick, M. C. and Hargrove, W. W. (2009) The projection of species distribution models and the problem of nonanalog climate. Biodivers. Conserv. 18: 22512261.CrossRefGoogle Scholar
Fjeldså, J., Bowie, R. C. and Rahbek, C. (2012) The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43: 249265.CrossRefGoogle Scholar
Fuller, R. A. and Garson, P. J. eds. (2000) Pheasants. Status survey and conservation action plan 2000–2004. IUCN, Gland. Switzerland and Cambridge, UK: WPA/ BirdLife/SSC Pheasant Specialist Group and Reading, UK: World Pheasant Associatiion.Google Scholar
Gaston, A. J., Hunter, M. L. and Garson, P. J. (1981) Present distribution and status of pheasants in Himachalpradesh, western Himalayas. J. World Pheas. Assoc. 6: 1030.Google Scholar
GEBCO Compilation Group (2020) GEBCO 2020 Grid. doi:10.5285/a29c5465-b138-234d-e053-6c86abc040b9.CrossRefGoogle Scholar
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, .J., Vertenstein, M., Worley, P. H., Yang, Z.-L. and Zhang, M. (2011) The community climate system model version 4. J. Clim. 24: 49734991.CrossRefGoogle Scholar
Hamayun, M., Khan, S. A., Ahmad, H. Shin, D.-H. and Lee, I.-L. (2006) Morel collection and marketing: A case study from the Hindu-Kush mountain region of Swat, Pakistan. Lyonia 11: 713.Google Scholar
Hasumi, H. and Emori, S., eds. (2004) K-1 coupled GCM (MIROC) description . K-1 Technical Report No. 1. Tokyo, Japan: Center for Climate System Research, University of Tokyo.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. Internatn. J. Climatol. 25: 19651978.CrossRefGoogle Scholar
Islam, K. and Crawford, J. A. (1987) Habitat use by Western Tragopans Tragopan melanocephalus (Gray) in Northeastern Pakistan. Biol. Conserv. 40: 101115.CrossRefGoogle Scholar
Jolli, V. and Pandit, M. K. (2011a) Influence on human disturbance on the abundance of Himalayan pheasant (Aves, Galliformes) in the temperate forest of Western Himalaya, India. Vestnik Zoologii 45: e-40e-47.CrossRefGoogle Scholar
Jolli, V. and Pandit, M. K. (2011b) Monitoring pheasants (Phasianidae) in the Western Himalayas to measure the impact of hydro-electric projects. The Ring 33: 3746.CrossRefGoogle Scholar
Knudsen, A. (2009) Violence and belonging – Land, love and lethal conflict in the North-West Frontier Province of Pakistan. Copenhagen: Nias Press.Google Scholar
Laala, G. E., Raja, M. U., Irshad, G., Gardezi, S. R. H. and Akram, A. (2020) Four species of true morels (Morchella) recorded from Poonch District (Azad Jammu and Kashmir). J. Hortic. Sci. Technol. 3: 5255.CrossRefGoogle Scholar
Lenth, R. V. (2020) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.6. https://CRAN.R-project.org/package=emmeans.Google Scholar
Ling, C. X., Huang, J. and Zhang, H. (2003) AUC: a better measure than accuracy in comparing learning algorithms. Pp. 329341 in Xiang, Y. and Brahim, C. D., eds. Advances in artificial intelligence. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Mahabal, A. and Tak, P. C. (2002) Status and review of the Western Tragopan, Tragopan melanocephalus (J. E. GRAY). Kolkata: Zoological Survey of India.Google Scholar
Manish, K. and Pandit, M. K. (2018) Geophysical upheavals and evolutionary diversification of plant species in the Himalaya. PeerJ 6: e5919.CrossRefGoogle ScholarPubMed
Marchese, C. (2015) Biodiversity hotspots: A shortcut for a more complicated concept. Glob. Ecol. Conserv. 3: 297309.CrossRefGoogle Scholar
Martens, J. (2015) Fauna–Himalayan patterns of diversity. Pp 211249 in Miehe, G. and Pendry, C., eds. Nepal: an introduction to the natural history, ecology and human environment of the Himalayas. Edinburgh, UK: Royal Botanic Garden.Google Scholar
Miller, J. R. B. (2010) Survey of Western Tragopan, Koklass Pheasant, and Himalayan Monal populations in the Great Himalayan National Park, Himachal Pradesh, India. Indian Birds 6: 6065.Google Scholar
Naithani, S., Mathur, V. B. and Jeganathan, C. (2018) Habitat characterization of Western Tragopan (Tragopan melanocephalus), Great Himalayan National Park, India. Internatn. J. Zool. Stud. 3: 4653.Google Scholar
Phillips, S. J. and Dudík, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161175.CrossRefGoogle Scholar
Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006) Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190: 231259.CrossRefGoogle Scholar
Phillips, S. J., Dudík, M., Robert, E. and Schapire, R. E. (2019) Maxent software for modeling species niches and distributions (Version 3.4.1). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 27 April 2017.Google Scholar
R Core Team (2019) R: a language and environment for statistical computing, R version 3.6.1. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.Google Scholar
Raja, N. A., Davidson, P., Bean, N., Drijvers, R., Showler, D. A. and Barker, C. (1999) The birds of Palas, North-West Frontier Province, Pakistan. Forktail 15: 7785.Google Scholar
Ramesh, V., Gopalakrishna, T., Barve, S. and Melnick, D. J. (2017) IUCN greatly underestimates threat levels of endemic birds in the Western Ghats. Biol. Conserv. 210: 205221.CrossRefGoogle Scholar
Rocchini, D., Hortal, J., Lengyel, S., Lengyel, S., Jiménez-Valverde, A., Ricotta, C., Bacaro, G. and Chiarucci, A. (2011) Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Prog. Phys. Geog. 35: 211226.CrossRefGoogle Scholar
Rotenberry, J. T. and Balasubramaniam, P. (2020) Connecting species’ geographical distributions to environmental variables: range maps versus points of occurrence. Ecography 43: 117.CrossRefGoogle Scholar
Saberwal, V. K. and Chhatre, A. (2001) The Parvati and the Tragopan: Conservation and development in the Great Himalayan National Park. Himalayan Res. Bull. 21: 7988. Available at: https://digitalcommons.macalester.edu/himalaya/vol21/iss2/13Google Scholar
Saqib, Z., Malik, R. N. and von Wehrden, H. (2013) Landcover dynamics in relation to Western Tragopan occurrence in Pakistan: a regional assessment. Pak. J. Bot. 45: 551559.Google Scholar
Shabbir, A., Anwar, M., Mahmood, T. and Beg, M. A. (2018) Population status of the Western Tragopan (Tragopan melanocephalus) in Machiara National Park, Azad Jammu and Kashmir, Pakistan. J. Anim. Plant. Sci. 28: 15421546.Google Scholar
Sharief, A., Singh, H., Joshi, B. D., Singh, I., Mukherjee, T., Chandra, K., Thakur, M. and Sharma, L. K. (2022) Understanding distribution and occupancy of Himalayan monal in Uttarkashi district, Uttarakhand for conservation and management planning. Wildlife Biol. 2022: e01013.CrossRefGoogle Scholar
Sher, H., Aldosari, A. and Bussmann, R. W. (2015) Morels of Palas Valley, Pakistan: A potential source for generating income and improving livelihoods of mountain communities. Econ. Bot. 69: 345359.CrossRefGoogle Scholar
Singh, H., Kumar, N., Kumar, M. and Singh, R. (2020) Modelling habitat suitability of western tragopan (Tragopan melanocephalus) a range-restricted vulnerable bird species of the Himalayan region, in response to climate change. Clim. Risk Manag. 29: 100241.CrossRefGoogle Scholar
Sing, S. and Tu, F. (2008) A preliminary survey for Western Tragopan Tragopan melanocephalus in the Daranghati Wildlife Sanctuary, Himachal Pradesh. Indian Birds 4: 4255.Google Scholar
Soldatini, C., Albores-Barajas, Y.V. and Pellizi, B. (2010) Habitat preferences of high-altitude Galliformes in Sagarmatha National Park, Nepal. Ital. J. Zool. 77: 347353.CrossRefGoogle Scholar
Sutherland, W. J. (2000) The conservation handbook: Research, management and policy. Oxford: Blackwell Science Ltd.CrossRefGoogle Scholar
Swets, J. A. (1988) Measuring the accuracy of diagnostic systems. Science 240: 12851293.CrossRefGoogle ScholarPubMed
Wikramanayake, E. D., Dinerstein, E. and Loucks, C. J. (2002) Terrestrial ecoregions of the Indo-Pacific: A conservation assessment. Washington, DC: Island Press.Google Scholar
Supplementary material: File

Shah et al. supplementary material

Shah et al. supplementary material 1

Download Shah et al. supplementary material(File)
File 13.9 KB
Supplementary material: File

Shah et al. supplementary material

Shah et al. supplementary materialm 2

Download Shah et al. supplementary material(File)
File 67.4 KB