Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T15:50:38.888Z Has data issue: false hasContentIssue false

Phylogeography of the rare Australian endemic Grey Falcon Falco hypoleucos: implications for conservation

Published online by Cambridge University Press:  26 February 2020

DALE W. MULLIN*
Affiliation:
School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072, Australia.
GRAHAM A. MCCULLOCH
Affiliation:
School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072, Australia. Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
JONNY SCHOENJAHN
Affiliation:
School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072, Australia.
GIMME H. WALTER
Affiliation:
School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072, Australia.
*
*Author for correspondence; email: [email protected]

Summary

The Grey Falcon Falco hypoleucos is one of the world’s rarest raptors, with an estimated population size of fewer than 1,000 individuals. Our knowledge of threats posed to the Grey Falcon remains scant. Understanding the genetic variation in this species would help to assess its conservation status more realistically and its prospects for survival in a changing environment. We amplified the cytochrome b region of mitochondrial DNA from the feathers of 26 individuals captured from the wild across the distribution of the species and assessed the genetic diversity and spatial genetic structuring of the species. Genetic diversity was low, with only six haplotypes identified, but there was no evidence of a recent genetic bottleneck. No population genetic structuring was detected, indicating that the Grey Falcon population is effectively continuous across the species’ entire distribution, covering much of Australia’s arid/semi-arid zone. Our results indicate that the Grey Falcon should be managed as a single population and suggest conservation efforts that benefit the species at a local level should be good for the species as a whole. Future studies should employ next generation sequencing approaches, which may provide finer-scale information on the extent these birds move among breeding sites. Further research into the species’ ecology is also required to identify effective conservation measures.

Type
Short Communication
Copyright
© BirdLife International, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, G., Silcocks, A., Barry, S., Cunningham, R. and Poulter, R. (2003) The new atlas of Australian birds. Melbourne: Royal Australasian Ornithologists Union.Google Scholar
BirdLife International (2016) Falco hypoleucos. The IUCN Red List of Threatened Species 2016. BirdLife International, Cambridge. Available at https://www.iucnredlist.org/species/22696479/93566768 [Verified 14 August 2019].Google Scholar
Blakers, M., Davies, S. J. J. F. and Reilly, P. N. (1984) The atlas of Australian birds. Melbourne: Melbourne University Press.Google Scholar
Bollmer, J. L., Kimball, R. T., Whiteman, N. K., Sarasola, J. H. and Parker, P. G. (2006) Phylogeography of the Galápagos hawk (Buteo galapagoensis): a recent arrival to the Galápagos Islands. Mol. Phylogenet. Evol. 39: 237-247.CrossRefGoogle ScholarPubMed
Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchene, S., Fourment, M., Gavryushkina, A, Heled, J., Jones, G., Kuhnert, D., De Maio, N. and Matschiner, M. (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 15: e1006650.CrossRefGoogle ScholarPubMed
Caparroz, R., Miyaki, C. Y. and Baker, A. J. (2009) Contrasting phylogeographic patterns in mitochondrial dna and microsatellites: evidence of female philopatry and male-biased gene flow among regional populations of the Blue-and-Yellow Macaw (Psittaciformes: Ara ararauna) in BrazilThe Auk. 126: 359-370CrossRefGoogle Scholar
del Hoyo, J. and Collar, N. J. (2014) HBW and BirdLife International Illustrated Checklist of the Birds of the World, Vol. 1: Non-passerines. Barcelona: Lynx Edicions.Google Scholar
Evans, S. R. and Sheldon, B. (2008) Interspecific patterns of genetic diversity in birds: correlations with extinction risk. Conserv. Biol. 22: 1016-1025.CrossRefGoogle ScholarPubMed
ERIN (2016) Environmental Resources Information Network. Canberra: Department of Agriculture, Water and the Environment. Available at https://www.environment.gov.au/land/nrs/science/ibra/australias-bioregions-maps.Google Scholar
Excoffier, L. and Lischer, H. E. L. (2010) Arlequin suite ver. 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10: 564-567.CrossRefGoogle ScholarPubMed
Ford, J. (1987) Minor isolates and minor geographic barriers in avian speciation in continental Australia. Emu 87: 90-102CrossRefGoogle Scholar
Frankham, R. (2005a). Genetics and extinction. Biol. Conserv. 126: 131-140.CrossRefGoogle Scholar
Frankham, R. (2005b). Stress and adaptation in conservation genetics. J. Evol. Biol. 18: 750-755.CrossRefGoogle ScholarPubMed
Fuchs, J., Simmons, R. E., Mindell, D. P., Bowie, R. C. K. and Oatley, G. (2014) Lack of mtDNA genetic diversity in the Black Harrier Circus maurus, a Southern African endemic. Ibis 156: 227-230.CrossRefGoogle Scholar
Garnett, S. T., Szabo, J. K. and Dutson, G. (2011) The Action Plan for Australian birds 2010. Melbourne: CSIRO Publishing.CrossRefGoogle Scholar
Godoy, J., Negro, J., Hiraldo, F. and Donázar, J. (2004) Phylogeography, genetic structure and diversity in the endangered bearded vulture (Gypaetus barbatus, L.) as revealed by mitochondrial DNA. Mol. Ecol. 13: 371-390.CrossRefGoogle ScholarPubMed
Haig, S. M. (1998) Molecular contributions to conservation. Ecology 79: 413-425.CrossRefGoogle Scholar
Haig, S. M., Bronaugh, W. M., Crowhurst, R. S., D’elia, J., Eagles-Smith, C. A., Epps, C. W., Knaus, B., Miller, M. P., Moses, M. L., Oyler-McCance, S. and Robinson, W. D. (2011) Genetic applications in avian conservation. Auk 128: 205-229.CrossRefGoogle Scholar
Hedrick, P. W. (2001) Conservation genetics: where are we now? Trends Ecol. Evol. 16: 629-636.Google Scholar
Helm-Bychowski, K. and Cracraft, J. (1993) Recovering phylogenetic signal from DNA sequences: relationships within the corvine assemblage (class Aves) as inferred from complete sequences of the mitochondrial DNA cytochrome-b gene. Mol. Biol. Evol. 10: 1196-1214.Google ScholarPubMed
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. and Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649.CrossRefGoogle ScholarPubMed
Kumar, S., Stecher, G. and Tamura, K. (2015) MEGA7: Molecular evolutionary genetics analysis version 7.0. Mol. Biol. Evol. 33: 1870-1874.CrossRefGoogle Scholar
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.CrossRefGoogle ScholarPubMed
Leigh, J. W. and Bryant, D. (2015) PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6: 1110-1116.CrossRefGoogle Scholar
Librado, P. and Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452.CrossRefGoogle ScholarPubMed
Market J, A., Champlin D, M., Gutjahr-Gobell, R., Grear, J. S., Kuhn, A., McGreevy, T. J., Rothe, A., Bagley, M. J. and Nacci, D. E. (2010) Population genetic diversity and fitness in multiple environments. BMC Evol. Biol. 10: 205.CrossRefGoogle Scholar
Martínez-Cruz, B., Godoy, J. and Negro, J. (2004) Population genetics after fragmentation: the case of the endangered Spanish imperial eagle (Aquila adalberti). Mol. Ecol. 13: 2243-2255.CrossRefGoogle Scholar
Nittinger, F., Gamauf, A., Pinsker, W., Wink, M. and Haring, E. (2007) Phylogeography and population structure of the Saker Falcon (Falco cherrug) and the influence of hybridization: mitochondrial and microsatellite data. Mol. Ecol. 16: 1497-1517.CrossRefGoogle ScholarPubMed
Olsen, P. D. (1995) Australian birds of prey: The biology and ecology of raptors. Sydney: University of New South Wales Press.Google Scholar
Olsen, P. D. and Olsen, J. (1986) Distribution, status, movements and breeding of the Grey Falcon Falco hypoleucos. Emu 86: 47-51.CrossRefGoogle Scholar
Oyler-McCance, S. J., Oh, K. P., Langin, K. M. and Aldridge, C. L. (2016) A field ornithologist’s guide to genomics: Practical considerations for ecology and conservation. Auk. 133: 626-648.CrossRefGoogle Scholar
Palstra, F. P. and Fraser, D. J. (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecol. Evol. 2: 2357-2365.CrossRefGoogle Scholar
Ponnikas, S., Kvist, L. and Ollila, T. (2013) Genetic structure of an endangered raptor at individual and population levels. Conserv. Genet. 14: 1135-1147.CrossRefGoogle Scholar
Reed, D. H. and Frankham, R. (2003) Correlation between fitness and genetic diversity. Conserv. Biol. 17: 230-237.CrossRefGoogle Scholar
Ridley, A. W., Hereward, J. P., Daglish, G. J., Raghu, S., McCulloch, G. A. and Walter, G. H. 2016. Flight of Rhyzopertha dominica (Coleoptera: Bostrichidae)—a spatio-temporal analysis with pheromone trapping and population genetics .J. Econ. Entomol 109: 2561-2571.CrossRefGoogle ScholarPubMed
Schoenjahn, J. (2010) Field identification of the Grey Falcon Falco hypoleucos. Aust. Field Ornithol. 27: 49-58.Google Scholar
Schoenjahn, J. (2011) How scarce is the Grey Falcon? Boobook 29: 24-25.Google Scholar
Schoenjahn, J. (2013) A hot environment and one type of prey: investigating why the Grey Falcon (Falco hypoleucos) is Australia’s rarest falcon. Emu 113: 19-25.CrossRefGoogle Scholar
Schoenjahn, J., Pavey, C. R. and Walter, G. H. (2019) Ecology of the Grey Falcon Falco hypoleucos – current and required knowledge. Emu doi.: 10.1080/01584197.2019.1654393Google Scholar
Shephard, J. M., Hughes, J. M., Catterall, C. P. and Olsen, P. D. (2005) Conservation status of the White-bellied Sea-Eagle Haliaeetus leucogaster in Australia determined using mtDNA control region sequence data. Conserv. Genet. 6: 413-429.CrossRefGoogle Scholar
Tamura, K., and Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526Google ScholarPubMed
Vili, N., Chavko, J., Szabó, L., Kovács, S., Hornung, E., Kalmár, L. and Horváth, M. (2009) Genetic structure of the Imperial Eagle (Aquila heliaca) population in Slovakia. Slovak Raptor J. 3: 21-28.CrossRefGoogle Scholar
Walsh, J., Kovach, A. I., Babbitt, K. J. and Brien, K. M. O. (2012) Fine-scale population structure and asymmetrical dispersal in an obligate salt-marsh passerine, the Saltmarsh Sparrow (Ammodramus casudacutus). Auk 129: 247-258.CrossRefGoogle Scholar
Wang, J. (2005) Estimation of effective population sizes from data on genetic markers. Philos. Trans. Royal Soc. B 360: 1395-1409.CrossRefGoogle ScholarPubMed
Weir, J. T. and Schluter, D. (2008) Calibrating the avian molecular clock. Mol. Ecol. 17: 2321-2328.CrossRefGoogle ScholarPubMed
Supplementary material: File

Mullin et al. supplementary material

Mullin et al. supplementary material

Download Mullin et al. supplementary material(File)
File 19.3 KB