Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T13:47:40.851Z Has data issue: false hasContentIssue false

Occupancy of two forest specialist birds in the Southern Mistbelt Forests of KwaZulu-Natal and Eastern Cape, South Africa

Published online by Cambridge University Press:  13 November 2020

S. THOBEKA GUMEDE
Affiliation:
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
DAVID A. EHLERS SMITH
Affiliation:
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
YVETTE C. EHLERS SMITH
Affiliation:
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
SAMUKELISIWE P. NGCOBO
Affiliation:
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
MBALENHLE T. SOSIBO
Affiliation:
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
MFUNDO S. T. MASEKO
Affiliation:
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
COLLEEN T. DOWNS*
Affiliation:
Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
*
*Author for correspondence; email: [email protected]

Summary

Establishing the specific habitat requirements of forest specialists in fragmented natural habitats is vital for their conservation. We used camera-trap surveys and microhabitat-scale covariates to assess the habitat requirements, probability of occupancy and detection of two terrestrial forest specialist species, the Orange Ground-thrush Geokichla gurneyi and the Lemon Dove Aplopelia larvata during the breeding and non-breeding seasons of 2018–2019 in selected Southern Mistbelt Forests of KwaZulu-Natal and the Eastern Cape, South Africa. A series of camera-trap surveys over 21 days were conducted in conjunction with surveys of microhabitat structural covariates. During the wet season, percentage of leaf litter cover, short grass cover, short herb cover, tall herb cover and saplings 0–2 m, stem density of trees 6–10 m and trees 16–20 m were significant structural covariates for influencing Lemon Dove occupancy. In the dry season, stem density of 2–5 m and 10–15 m trees, percentage tall herb cover, short herb cover and 0–2 m saplings were significant covariates influencing Lemon Dove occupancy. Stem density of trees 2–5 m and 11–15 m, percentage of short grass cover and short herb cover were important site covariates influencing Orange Ground-thrush occupancy in the wet season. Our study highlighted the importance of a diverse habitat structure for both forest species. A high density of tall/mature trees was an essential microhabitat covariate, particularly for sufficient cover and food for these ground-dwelling birds. Avian forest specialists play a vital role in providing ecosystem services perpetuating forest habitat functioning. Conservation of the natural heterogeneity of their habitat is integral to management plans to prevent the decline of such species.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adie, H., Rushworth, I. and Lawes, M. J. (2013) Pervasive, long-lasting impact of historical logging on composition, diversity and above-ground carbon stocks in Afrotemperate forest. For. Ecol. Manag. 310: 887-895.CrossRefGoogle Scholar
Andren, H. (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71: 355366.CrossRefGoogle Scholar
Anich, N. M., Benson, T. J. and Bednarz, J. C. (2012) What factors explain differential use within Swainson's Warbler (Limnothlypis swainsonii) home ranges? Auk 129: 409418.Google Scholar
Armstrong, A. J., Benn, G., Bowland, A. E., Goodman, P. S., Johnson, D. N., Maddock, A. H. and Scott-Shaw, C. R. (1998) Plantation forestry in South Africa and its impact on biodiversity. Southern Afr. For. J. 182: 5965.CrossRefGoogle Scholar
Beier, P., Van Drielen, M. and Kankam, B. O. (2002) Avifaunal collapse in West African forest fragments. Conserv. Biol. 16: 10971111.CrossRefGoogle Scholar
Bibby, C., Burgess, N. and Hill, D. (2000) Bird census techniques. London: Academic Press.Google Scholar
BirdLife International (2019) Species factsheet: Geokichla gurneyi. Downloaded from http://www.birdlife.org on 16/04/2019Google Scholar
Bregman, T. P., Sekercioglu, C.H. and Tobias, J. A. (2014) Global patterns and predictors of bird species responses to forest fragmentation: implications for ecosystem function and conservation. Biol. Conserv. 169: 372383.CrossRefGoogle Scholar
Burkey, T. V. (1995) Extinction rates in archipelagos: implications for populations in fragmented habitats. Conserv. Biol. 9: 527541.CrossRefGoogle Scholar
Cohen, J. E. (1995) Population growth and the earth's human carrying capacity. Science 269: 341346.CrossRefGoogle ScholarPubMed
Collinge, S. K. (2009) Ecology of fragmented landscapes. Baltimore: Johns Hopkins University Press.Google Scholar
Colyn, R. B, Ehlers Smith, D. A, Ehlers Smith, Y. C, Smit-Robinson, H. and Downs, C. T. (2020) Predicted distributions of avian specialists: a framework for conservation of endangered forests under future climates. Divers. Distrib. 26: 652667.CrossRefGoogle Scholar
Cromsigt, J. P. G. M., Kuijper, D. P. J., Adam, M, Beschta, R. L., et al. (2013) Hunting for fear: innovating management of human-wildlife conflicts. J. Appl. Ecol. 50: 544549.CrossRefGoogle Scholar
Department of Environmental Affairs (2013) Long-term adaptation scenarios flagship research programme (LTAS) for South Africa. Climate change implications for the biodiversity sector in South Africa. Unpublished Report, Pretoria, South Africa.Google Scholar
Earle, R. A. and Oatley, T. B. (1983) Populations, ecology and breeding of the Orange Thrush at two sites in eastern South Africa. Ostrich 54: 205212.CrossRefGoogle Scholar
Ehlers Smith, Y. C., Ehlers Smith, D. A., Seymour, C. L., Thébault, E. and van Veen, F. F. (2015) Response of avian diversity to habitat modification can be predicted from life-history traits and ecological attributes. Landscape Ecol. 30: 12251239.CrossRefGoogle Scholar
Ehlers Smith, D. A., Ehlers Smith, Y. C. and Downs, C. T. (2017a) Seasonal habitat requirements of Lemon Dove (Aplopelia larvata) in the coastal forest: Camera-trap surveys of a reclusive species. Afr. Zool. 52: 199207.CrossRefGoogle Scholar
Ehlers Smith, D. A., Ehlers Smith, Y. C. and Downs, C. T. (2017c) Indian Ocean coastal thicket is of high conservation value for preserving taxonomic and functional diversity of forest-dependent bird communities in a landscape of restricted forest availability. For. Ecol. Manag. 390: 157165.CrossRefGoogle Scholar
Ehlers Smith, D. A., Ehlers Smith, Y. C., Ramesh, T. and Downs, C. T. (2017b) Camera-trap data elucidate habitat requirements and conservation threats to an endangered forest specialist, the Spotted Ground Thrush (Zoothera guttata). For. Ecol. Manag. 400: 523530.CrossRefGoogle Scholar
Ehlers Smith, D. A., Ehlers Smith, Y. C., Ramesh, T. and Downs, C. T. (2017d) The importance of microhabitat structure in maintaining forest mammal diversity in a mixed land-use mosaic. Biodivers. Conserv. 26: 23612382.CrossRefGoogle Scholar
Ehlers Smith, D. A., Si, X., Ehlers Smith, Y. C. and Downs, C. T. (2018b) Seasonal variation in avian diversity and tolerance of migratory forest specialists to the patch-isolation gradient across a forest system. Biodivers. Conserv. 27: 37073727.CrossRefGoogle Scholar
Ehlers Smith, D. A., Si, X., Ehlers Smith, Y. C., Kalle, R., Ramesh, T. and Downs, C. T. (2018a) Patterns of avian diversity across a decreasing patch-size gradient in a critically endangered subtropical forest system. J. Biogeogr. 45: 21182132.CrossRefGoogle Scholar
Ehlers Smith, Y. C., Ehlers Smith, D. A., Rushworth, I. and Mulqueeny, C. (2018c) Best practice guide for camera-trap survey design and implementation in KwaZulu-Natal and Ezemvelo KZN Wildlife Protected Area Networks. Pietermaritzburg: Ezemvelo KZN Wildlife.Google Scholar
ESRI (2011) ArcGIS Desktop 10. Redlands California: Environmental Systems Research Institute.Google Scholar
Estrada, A. (2016) Human population growth, poverty. In: The International Encyclopaedia of Primatology: 16.Google Scholar
Fahrig, L. (1997) Relative effects of habitat loss and fragmentation on population extinction. J. Wildl. Manag. 61: 603610.CrossRefGoogle Scholar
Fahrig, L. (2003) Effects of habitat fragmentation on biodiversity. Ann. Rev. Ecol. Evol. Syst. 34: 487515.CrossRefGoogle Scholar
Garson, J., Aggarwal, A. and Sarkar, S. (2002) Birds as surrogates for biodiversity: An analysis of a data set from southern Quebec. J. Biosci. 27: 347360.CrossRefGoogle ScholarPubMed
Gaston, K. J. (2000) Global patterns in biodiversity. Nature 405: 220227.CrossRefGoogle ScholarPubMed
Geldenhuys, C. J. and MacDevette, D. R. (1989) Conservation status of coastal and montane evergreen forest. Pp. 224-238 in Huntley, B. J., ed. Biotic diversity in southern Africa: concepts and conservation. Cape Town: Oxford University Press.Google Scholar
Graham, M. H. (2003) Confronting multicollinearity in multiple ecological regression. Ecology 84: 28092815.CrossRefGoogle Scholar
Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D. and Cook, W. M. (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1: e1500052.CrossRefGoogle ScholarPubMed
Hanski, I. (2015) Habitat fragmentation and species richness. J. Biogeogr. 42: 989994.CrossRefGoogle Scholar
Hassan, R. and Haveman, J. (1997) The values and rates of harvesting natural forest and woodland products for direct use by communities in the Eastern Cape Province. Unpublished Report. Midrand: Development Bank of South Africa.Google Scholar
Henn, B. M., Cavalli-Sforza, L. L. and Feldman, M. W. (2019) The great human expansion. Resonance 24: 711718.CrossRefGoogle Scholar
Hines, J. E. (2006) PRESENCE: software to estimate patch occupancy and related parameters. http://www.mbr-pwrc.usgs.gov/software/presence.html.Google Scholar
Hockey, P. A. R., Dean, W. R. J. and Ryan, P. G., eds. (2005) Roberts birds of southern Africa. 7th edition. Cape Town: John Voelcker Bird Book Fund.Google Scholar
Hope, A., Fouad, G. and Granovskaya, Y. (2014) Evaluating drought response of southern Cape Indigenous Forests, South Africa, using MODIS data. Int. J. Remote Sens. 35: 48524864.CrossRefGoogle Scholar
Jain, P., Ahmed, R. and Sajjad, H. (2016) Assessing and monitoring forest health using a forest fragmentation approach in Sariska Tiger Reserve, India. Nor. J. Geogr. 70: 306315.Google Scholar
Janzen, D. H. (2001) Latent extinction the living dead. Encyclopaedia of Biodiversity 3: 689699.CrossRefGoogle Scholar
Laurance, W. F., Sayer, J. and Cassman, K. G. (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29: 107116.CrossRefGoogle ScholarPubMed
Leaver, J. and Cherry, M. I. (2020) Informal forest product harvesting in the Eastern Cape, South Africa: A recent assessment. Biol. Conserv. 241: 108394.CrossRefGoogle Scholar
Leaver, J., Mulvaney, J., Ehlers Smith, D. A., Ehlers Smith, Y. C. and Cherry, M. I. (2019) Response of bird functional diversity to forest product harvesting in the Eastern Cape, South Africa. For. Ecol. Manag. 445: 8295.CrossRefGoogle Scholar
Lees, A. and Peres, C. (2008) Avian life-history determinants of local extinction risk in a hyper-fragmented neotropical forest landscape. Anim. Conserv. 11: 128137.CrossRefGoogle Scholar
Liao, J., Bearup, D. and Blasius, B. (2017) Diverse responses of species to landscape fragmentation in a simple food chain. J. Anim. Ecol. 86: 11691178.CrossRefGoogle Scholar
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. and Hines, J. E. (2017) Occupancy estimation and modelling: inferring patterns and dynamics of species occurrence. San Diego, CA: Elsevier.Google Scholar
Magnago, L. F. S., Magrach, A., Barlow, J., Schaefer, C. E. G. R., Laurance, W. F., Martins, S. V. and Edwards, D. P. (2017) Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests? Funct. Ecol. 31: 542552.CrossRefGoogle Scholar
Malan, G. (2011) Replacing grasslands with pine plantations on the Karkloof Plateau: the edge effects on downslope forest understorey birds. Afr. J. Wildl. Res. 44: 99114.CrossRefGoogle Scholar
Malcolm, J. R., Valenta, K., and Lehman, S. M. (2017) Edge effects in tropical dry forests of Madagascar: additivity or synergy? Landsc. Ecol. 32: 327341.CrossRefGoogle Scholar
Maseko, M. S., Ramesh, T., Kalle, R. and Downs, C. T. (2017) Response of Crested Guineafowl (Guttera edouardi), a forest specialist, to spatial variation in land use in iSimangaliso Wetland Park, South Africa. J. Ornithol. 158: 469477.CrossRefGoogle Scholar
Moll, E. J. and White, F. (1978). The Indian Ocean Coastal Belt. Pp. 561-598 in Werger, M. J. A., ed, Biogeography and ecology of Southern Africa. Dordrecht: Springer.Google Scholar
Mucina, L., Geldenhuys, C. J. and Rutherford, M. C. (2006) Afrotemperate, subtropical and azonal forests. Pp. 584-614 in Mucina, L. and Rutherford, M. C., eds. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute.Google Scholar
Mucina, L., Scott-Shaw, C. R., Rutherford, M. C., Camp, K. G., Matthews, W. S., Powrie, L. W. and Hoare, D. B. (2006) Indian Ocean Coastal Belt. Pp. 577-578 in Mucina, L. and Rutherford, M. C., eds. The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute.Google Scholar
Nengovhela, R. E. (2010) The role of symbolism in Tshivenda discourse: a semantic analysis. PhD thesis, University of Limpopo, South Africa.Google Scholar
Newbold, T., Butchart, S. H., Şekercioğlu, Ç. H., Purves, D. W. and Scharlemann, J. P. (2012) Mapping functional traits: comparing abundance and presence-absence estimates at large spatial scales. PloS One 7: e44019.CrossRefGoogle ScholarPubMed
O'Connell, A. F. Jr, Talancy, N. W., Bailey, L. L., Sauer, J. R., Cook, R. and Gilbert, A. T. (2006) Estimating site occupancy and detection probability parameters for meso-and large mammals in a coastal ecosystem. J. Wildl. Manage. 70: 16251633.CrossRefGoogle Scholar
Olivier, P. I. and Van Aarde, R. J. (2017) The response of bird feeding guilds to forest fragmentation reveals conservation strategies for a critically endangered African eco-region. Biotropica 49: 268278.CrossRefGoogle Scholar
Owens, I. P. and Bennett, P. M. (2000) Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. PNAS 97: 1214412148.CrossRefGoogle ScholarPubMed
Pardini, R., Faria, D., Accacio, G. M., Laps, R. R., Mariano-Neto, E., Paciencia, M. L., Dixo, M., Baumgarten, J. (2009) The challenge of maintaining Atlantic forest biodiversity: a multi-taxa conservation assessment of specialist and generalist species in an agroforestry mosaic in southern Bahia. Biol. Conserv. 142: 11781190.CrossRefGoogle Scholar
Pasmans, T. and Hebinck, P. (2017) Rural development and the role of game farming in the Eastern Cape, South Africa. Land Use Policy 64: 440450.CrossRefGoogle Scholar
Piano, E., Souffreau, C., Merckx, T., Baardsen, L. F., Backeljau, T., Bonte, D., Brans, K. I., Cours, M., Dahirel, M., Debortoli, N. and Decaestecker, E. (2020) Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Chang. Biol. 26: 11961211.CrossRefGoogle ScholarPubMed
Powell, L. L., Cordeiro, N. J. and Stratford, J. A. (2015) Ecology and conservation of avian insectivores of the rainforest understory: a pantropical perspective. Biol. Conserv. 188: 110.CrossRefGoogle Scholar
Ramesh, T. and Downs, C. T. (2014) Land-use factors determining the occurrence of red-necked spurfowl Pternistis afer in the Drakensberg Midlands, South Africa. J. Ornithol. 55: 471480.CrossRefGoogle Scholar
Randler, C. and Kalb, N. (2018) Distance and size matters: a comparison of six wildlife camera traps and their usefulness for wild birds. Ecol. Evol. 8: 71517163.CrossRefGoogle ScholarPubMed
Rolstad, J. (1991) Consequences of forest fragmentation for the dynamics of bird populations: conceptual issues and the evidence. Biol. J. Linn. Soc. 42: 149163.CrossRefGoogle Scholar
Ruete, A., Snäll, T., Jonsson, B. G. and Jönsson, M. (2017) Contrasting long-term effects of transient anthropogenic edges and forest fragment size on generalist and specialist deadwood-dwelling fungi. J. Appl. Ecol. 54: 11421151.CrossRefGoogle Scholar
Sánchez-Bayo, F. and Wyckhuys, K. A. (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232: 827.CrossRefGoogle Scholar
Şekercioğlu, Ç. H., Daily, G. C. and Ehrlich, P. R. (2004) Ecosystem consequences of bird declines. PNAS 101: 1804218047.CrossRefGoogle ScholarPubMed
Shackleton, C. M., Timmermans, H. G., Nongwe, N., Hamer, N. and Palmer, N. R. (2007) Direct-use values of non-timber forest products from two areas on the Transkei Wild Coast. Agrekon 46: 113134.CrossRefGoogle Scholar
Steffan-Dewenter, I. and Tscharntke, T. (2000) Butterfly community structure in fragmented habitats. Ecol. Lett. 3: 449456.CrossRefGoogle Scholar
Symes, C. T. and Woodborne, S. M. (2009) Trophic level delineation and resource partitioning in a South African Afromontane forest bird community using carbon and nitrogen stable isotopes. Afr. J. Ecol. 48: 984993.CrossRefGoogle Scholar
Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M. and Jeltsch, F. (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31: 7992.CrossRefGoogle Scholar
Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W. H., Simberloff, D. and Swackhamer, D. (2001) Forecasting agriculturally driven global environmental change. Science 292: 281284.CrossRefGoogle ScholarPubMed
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. and Thies, C. (2005) Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8: 857874.CrossRefGoogle Scholar
Tweed, E. J., Foster, J. T., Woodworth, B. L., Oesterle, P., Kuehler, C., Lieberman, A. A., Powers, A. T., Whitaker, K., Monahan, W. B., Kellerman, J. and Telfer, T. (2003) Survival, dispersal, and home-range establishment of reintroduced captive-bred puaiohi, Myadestes palmeri. Biol. Conserv. 111: 1-9.CrossRefGoogle Scholar
Tylianakis, J. M., Didham, R.K., Bascompte, J. and Wardle, D. A. (2008) Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11: 13511363.CrossRefGoogle ScholarPubMed
Uezu, A., Metzger, J. P. and Vielliard, J. M. (2005) Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biol. Conserv. 123: 507519.CrossRefGoogle Scholar
Vetter, D., Hansbauer, M. M., Végvári, Z. and Storch, I. (2011) Predictors of forest fragmentation sensitivity in Neotropical vertebrates: a quantitative review. Ecography 34: 18.CrossRefGoogle Scholar
Vitousek, P. M., Mooney, H. A., Lubchenco, J. and Melillo, J. M. (1997) Human domination of Earth's ecosystems. Science 277: 494499.CrossRefGoogle Scholar
Wilson, A. L., Bowker, M., Shuttleworth, A. and Downs, C. T. (2017) Characteristics of snags and forest structure in Southern Mistbelt Forests of the Amatole region, South Africa. Afr. J. Ecol. 55: 518529.CrossRefGoogle Scholar