Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-04-25T21:33:45.996Z Has data issue: false hasContentIssue false

Modelling habitat suitability for the Critically Endangered Manumea or Tooth-billed Pigeon Didunculus strigirostris using past and present baselines

Published online by Cambridge University Press:  18 September 2024

William B. Gough
Affiliation:
Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK
Michael A. Hudson
Affiliation:
Durrell Wildlife Conservation Trust, Trinity, Jersey, Channel Islands Institute of Zoology, Zoological Society of London, London, UK
H. Glyn Young
Affiliation:
Durrell Wildlife Conservation Trust, Trinity, Jersey, Channel Islands
Joe Wood
Affiliation:
Toledo Zoo, Toledo, Ohio, USA IUCN Species Survival Commission Pigeon and Dove Specialist Group, Gland, Switzerland
Hester Whitehead
Affiliation:
Durrell Wildlife Conservation Trust, Trinity, Jersey, Channel Islands
Samuel T. Turvey*
Affiliation:
Institute of Zoology, Zoological Society of London, London, UK
*
Corresponding author: Samuel T. Turvey; Email: [email protected]

Summary

Evidence-based conservation can be hindered by limited field data, but historical archives have the potential to provide unique insights into conservation-relevant parameters, such as identification of suitable habitat for threatened species. The Manumea or Tooth-billed Pigeon Didunculus strigirostris has declined on Samoa and only a tiny remnant population still persists, and a key first step for conservation is to locate surviving birds. Numerous Manumea records are available from the nineteenth century onwards, and we used historical and modern records to generate a series of species distribution models to predict the distribution of suitable habitat across Samoa to guide new field searches. Manumea distribution is closely associated with forest cover or its proxies. Preferred Manumea food plants are suggested to be low-elevation trees, but elevation provides relatively low percentage contribution in most models, thus not excluding the possibility that Manumea might occur at high elevations. There is also little evidence for elevational change in records over the past century. Models based on visual versus acoustic records exhibit differences in predicted habitat suitability, suggesting that some purported acoustic records might not actually represent Manumea calls. Field searches should target areas representing high habitat suitability across all models, notably the forested central axis of Upolu.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allen, T.I. and Wald, D.J. (2009). On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30). Bulletin of the Seismological Society of America 99, 935943. https://doi.org/10.1785/0120080255CrossRefGoogle Scholar
Allouche, O., Tsoar, A. and Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43, 12231232. https://doi.org/10.1111/j.1365-2664.2006.01214.xCrossRefGoogle Scholar
Atherton, J. and Jefferies, B. (eds) (2012). Rapid Biodiversity Assessment of Upland Savai’i, Samoa. Apia: Secretariat of the Pacific Regional Environment Programme.Google Scholar
Baranyovits, A.E. (2017). Urban Ecology of an Endemic Pigeon, the Kererū. PhD dissertation, School of Biological Sciences, University of Auckland.Google Scholar
Baumann, S. and Beichle, U. (2020). Acoustical identification of Didunculus strigirostris, critically endangered tooth-billed pigeon of Samoa. Journal of Ornithology 161, 439446. https://doi.org/10.1007/s10336-019-01742-yCrossRefGoogle Scholar
Beichle, U. (1982). Untersuchungen zur Biologie und Systematik der Zahntaube, Didunculus strigirostris (Jardine, 1845). PhD dissertation, Faculty of Mathematics and Natural Sciences, University of Kiel.Google Scholar
Beichle, U. (1987). Habitat, population and feeding habits of the tooth-billed pigeon, Didunculus strigirostris. Journal of Ornithology 128, 7589. https://doi.org/10.1007/BF01644791CrossRefGoogle Scholar
BirdLife International (2024). Species factsheet: Didunculus strigirostris. Available at https://datazone.birdlife.org/species/factsheet/tooth-billed-pigeon-didunculus-strigirostris (accessed 14 April 2024).Google Scholar
Bivand, R., Altman, M., Anselin, L., Assunção, R., Berke, O., Blanchet, F.G. et al. (2023). spdep: Spatial Dependence: Weighting Schemes, Statistics (1.3-1). Available at https://cran.r-project.org/web/packages/spdep/index.html (accessed 14 April 2024).Google Scholar
Brown, E.D. and Hopkins, M.J.G. (1996). How New Guinea rainforest flower resources vary in time and space: implications for nectarivorous birds. Australian Journal of Ecology 21, 363378. https://doi.org/10.1111/j.1442-9993.1996.tb00623.xCrossRefGoogle Scholar
Castellaro, S., Mulargia, F. and Rossi, P.L. (2008). VS30: proxy for seismic amplification? Seismological Research Letters 79, 540543. https://doi.org/10.1785/gssrl.79.4.540CrossRefGoogle Scholar
Christie, A.P., Amano, T., Martin, P.A., Petrovan, S.O., Shackelford, G.E., Simmons, B.I. et al. (2021). The challenge of biased evidence in conservation. Conservation Biology 35, 249262. https://doi.org/10.1111/cobi.13577CrossRefGoogle ScholarPubMed
Collar, N.J. (2015). Natural history and conservation biology of the tooth-billed pigeon (Didunculus strigirostris): a review. Pacific Conservation Biology 21, 186199. https://doi.org/10.1071/PC14923CrossRefGoogle Scholar
Collar, N.J., Fisher, C.T. and Feare, C.J. (eds) (2004). Why museums matter: avian archives in an age of extinction. Bulletin of the British Ornithologists’ Club 123A (Suppl.), 1360.Google Scholar
Corlett, R. and Primack, R. (2011). Tropical Rain Forests: An Ecological and Biogeographical Comparison, 2nd Edn. Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
de Lima, R.F., Bird, J.P. and Barlow, J. (2011). Research effort allocation and the conservation of restricted-range island bird species. Biological Conservation 144, 627632. https://doi.org/10.1016/j.biocon.2010.10.021CrossRefGoogle Scholar
duPont, J.E. (1972). Notes from Western Samoa, including the description of a new parrot-finch (Erythrura). The Wilson Bulletin 84, 375376.Google Scholar
Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A. et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129151. https://doi.org/10.1111/j.2006.0906-7590.04596.xCrossRefGoogle Scholar
Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. and Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17, 4357. https://doi.org/10.1111/j.1472-4642.2010.00725.xCrossRefGoogle Scholar
Escalante, T., Rodríguez-Tapia, G., Linaje, M., Illoldi-Rangel, P. and González-López, R. (2013). Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals. TIP Revista Especializada en Ciencias Químico-Biológicas 16, 517. https://doi.org/10.1016/S1405-888X(13)72073-4CrossRefGoogle Scholar
Fielding, A.H. and Bell, J.F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24, 3849. https://doi.org/10.1017/S0376892997000088CrossRefGoogle Scholar
Fisher, D.O. (2011). Trajectories from extinction: where are missing mammals rediscovered? Global Ecology and Biogeography 20, 415425. https://doi.org/10.1111/j.1466-8238.2010.00624.xCrossRefGoogle Scholar
Franklin, J. (2009). Mapping Species Distributions: Spatial Inference and Predictions. New York: Cambridge University Press.Google Scholar
GEOINT (2015). GEOINT New Zealand Data Service (GDS). Available at https://geodata.nzdf.mil.nz/ (accessed 14 April 2024).Google Scholar
Graham, C.H., Ferrier, S., Huettman, F., Moritz, C. and Peterson, A.T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology and Evolution 19, 497503. https://doi.org/10.1016/j.tree.2004.07.006CrossRefGoogle Scholar
Hattori, D., Sabang, J., Tanaka, S., Kendawang, J.J., Ninomiya, I. and Sakurai, K. (2005). Soil characteristics under three vegetation types associated with shifting cultivation in a mixed dipterocarp forest in Sarawak, Malaysia. Soil Science and Plant Nutrition 51, 231241. https://doi.org/10.1111/j.1747-0765.2005.tb00027.xCrossRefGoogle Scholar
Jarvis, A., Reuter, H.I., Nelson, A. and Guevara, E. (2008). Hole-filled Seamless SRTM Data. Version 4. Palmira: International Centre for Tropical Agriculture. Available at https://srtm.csi.cgiar.org (accessed 14 April 2024).Google Scholar
Jetz, W., Thomas, G.H., Joy, J.B., Redding, D.W., Hartmann, K. and Mooers, A.O. (2014). Global distribution and conservation of evolutionary distinctness in birds. Current Biology 24, 919930. https://doi.org/10.1016/j.cub.2014.03.011CrossRefGoogle ScholarPubMed
Layard, E.L. (1876). Notes on the birds of the Navigators’ and Friendly Islands. Proceedings of the Zoological Society of London 44, 490506. https://doi.org/10.1111/j.1096-3642.1876.tb02591.xCrossRefGoogle Scholar
Lees, A.C., Devenish, C., Areta, J.I., de Araújo, C.B., Keller, C., Phalan, B. et al. (2021). Assessing the extinction probability of the purple-winged ground dove, an enigmatic bamboo specialist. Frontiers in Ecology and Evolution 9, 624959. https://doi.org/10.3389/fevo.2021.624959CrossRefGoogle Scholar
Lentini, P.E., Stirnemann, I.A., Stojanovic, D., Worthy, T.H. and Stein, J.A. (2018). Using fossil records to inform reintroduction of the kakapo as a refugee species. Biological Conservation 217, 157165. https://doi.org/10.1016/j.biocon.2017.10.027CrossRefGoogle Scholar
Liu, C., White, M. and Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40, 778789. https://doi.org/10.1111/jbi.12058CrossRefGoogle Scholar
Loiselle, B.A., Howell, C.A., Graham, C.H., Goerck, J.M., Brooks, T., Smith, K.G. et al. (2003). Avoiding pitfalls of using species distribution models in conservation planning. Conservation Biology 17, 15911600. https://doi.org/10.1111/j.1523-1739.2003.00233.xCrossRefGoogle Scholar
Lundbäck, M., Persson, H., Häggström, C. and Nordfjell, T. (2021). Global analysis of the slope of forest land. Forestry 94, 5469. https://doi.org/10.1093/forestry/cpaa021CrossRefGoogle Scholar
McClenachan, L., Ferretti, F. and Baum, J.K. (2012). From archives to conservation: why historical data are needed to set baselines for marine animals and ecosystems. Conservation Letters 5, 349359. https://doi.org/10.1111/j.1755-263X.2012.00253.xCrossRefGoogle Scholar
Merow, C., Smith, M.J. and Silander, J.A. (2013). A practical guide to MaxEnt for modelling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 10581069. https://doi.org/10.1111/j.1600-0587.2013.07872.xCrossRefGoogle Scholar
MNRE (2006). Recovery Plan for the Manumea or Tooth-Billed Pigeon (Didunculus strigirostris) 2006-2016. Apia: Ministry of Natural Resources & Environment, Government of Samoa.Google Scholar
MNRE and SCS (2020). Recovery Plan for the Manumea or Tooth-Billed Pigeon (Didunculus strigirostris) 2020-2029. Apia: Ministry of Natural Resources & Environment, Government of Samoa/Samoa Conservation Society.Google Scholar
Newbold, T. (2010). Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Progress in Physical Geography 34, 322. https://doi.org/10.1177/0309133309355630CrossRefGoogle Scholar
PacGeo (2017). Surface soil classification data. Available at http://www.pacgeo.org/layers/geonode:ws_soils_vs30 (accessed 14 April 2024).Google Scholar
Phillips, S.J., Dudík, M. and Schapire, R.E. (2016). Maxent Software for Modeling Species Niches and Distributions. Version 3.4.4. Available at http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed 14 April 2024).Google Scholar
Pratt, H.D. and Mittermeier, J.C. (2016). Notes on the natural history, taxonomy, and conservation of the endemic avifauna of the Samoan archipelago. The Wilson Journal of Ornithology 128, 217241. https://doi.org/10.1676/wils-128-02-217-241.1CrossRefGoogle Scholar
QGIS Development Team (2021). QGIS Geographic Information System, Open Source Geospatial Foundation Project. Version 3.20.0. Available at www.qgis.org (accessed 14 April 2024).Google Scholar
R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at https://www.r-project.org/.Google Scholar
Radosavljevic, A. and Anderson, R.P. (2014). Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography 41, 629643. https://doi.org/10.1111/jbi.12227CrossRefGoogle Scholar
Ramsay, E.P. (1864). On the Didunculus strigirostris, or tooth-billed pigeon from Upolu. Ibis 6, 98100.CrossRefGoogle Scholar
Reed, S. (1980). The birds of Savai’i, Western Samoa. Notornis 27, 151159.Google Scholar
Schoener, T.W. (1970). Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51, 408418. https://doi.org/10.2307/1935376CrossRefGoogle Scholar
Serra, G. (2017). Review of Implementation of Manumea Recovery Plan 2006-2016. Apia: Ministry of Natural Resources and Environment of Samoa.Google Scholar
Serra, G., Sherley, G., Failagi, S.A., Foliga, S.T., Uili, M., Enoka, F. et al. (2018). Traditional ecological knowledge of the critically endangered tooth-billed pigeon Didunculus strigirostris, endemic to Samoa. Bird Conservation International 28, 620642. https://doi.org/10.1017/S0959270917000259CrossRefGoogle Scholar
Serra, G., Wood, G.R., Faiilagi, S.A., Foliga, S.T., Uili, M. and Enoka, F. (2021). Using Samoan traditional ecological knowledge to identify calls of the critically endangered endemic tooth-billed pigeon (Didunculus strigirostris). Pacific Conservation Biology 27, 275283. https://doi.org/10.1071/PC20052CrossRefGoogle Scholar
Smetzer, J.R., Paxton, K.L. and Paxton, E.H. (2021). Individual and seasonal variation in the movement behavior of two tropical nectarivorous birds. Movement Ecology 9, 36. https://doi.org/10.1186/s40462-021-00275-5CrossRefGoogle ScholarPubMed
Spatz, D.A., Zilliacus, K.M., Holmes, N.D., Butchart, S.H.M., Genovesi, P., Ceballos, G. et al. (2017). Globally threatened vertebrates on islands with invasive species. Science Advances 3, e1603080. https://doi.org/10.1126/sciadv.1603080CrossRefGoogle ScholarPubMed
Stair, J.B. (1897). A romance of Samoan natural history; or records relating to the manu mea, or red bird of Samoa, now nearly, if not quite, extinct. Transactions and Proceedings of the New Zealand Institute 30, 293303.Google Scholar
Steadman, D.W. (2006a). Extinction and Biogeography of Tropical Pacific Birds. Chicago: University of Chicago Press.Google Scholar
Steadman, D.W. (2006b). An extinct species of tooth-billed pigeon (Didunculus) from the Kingdom of Tonga, and the concept of endemism in insular landbirds. Journal of Zoology 268, 233241. https://doi.org/10.1111/j.1469-7998.2005.00010.xCrossRefGoogle Scholar
Turvey, S.T., Barrett, L.A., Hart, T., Collen, B., Hao, Y., Zhang, L. et al. (2010). Spatial and temporal extinction dynamics in a freshwater cetacean. Proceedings of the Royal Society B: Biological Sciences 277, 31393147. https://doi.org/10.1098/rspb.2010.0584CrossRefGoogle Scholar
Turvey, S.T., Crees, J.J. and Di Fonzo, M.M.I. (2015). Historical data as a baseline for conservation: reconstructing long-term faunal extinction dynamics in Late Imperial–modern China. Proceedings of the Royal Society B: Biological Sciences 282, 20151299. https://doi.org/10.1098/rspb.2015.1299CrossRefGoogle ScholarPubMed
Turvey, S.T., Kennerley, R.J., Hudson, M.A., Nuñez-Miño, J.M. and Young, R.P. (2020). Assessing congruence of opportunistic records and systematic surveys for predicting Hispaniolan mammal species distributions. Ecology and Evolution 10, 50565068. https://doi.org/10.1002/ece3.6258CrossRefGoogle ScholarPubMed
Turvey, S.T. and Saupe, E.E. (2019). Insights from the past: unique opportunity or foreign country? Philosophical Transactions of the Royal Society B: Biological Sciences 374, 20190208. https://doi.org/10.1098/rstb.2019.0208CrossRefGoogle ScholarPubMed
van Proosdij, A.S.J., Sosef, M.S.M., Wieringa, J.J. and Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542552. https://doi.org/10.1111/ecog.01509CrossRefGoogle Scholar
Verbruggen, H., Tyberghein, L., Belton, G.S., Mineur, F., Jueterbock, A., Hoarau, G. et al. (2013). Improving transferability of introduced species’ distribution models: new tools to forecast the spread of a highly invasive seaweed. PLOS ONE 8, e68337. https://doi.org/10.1371/journal.pone.0068337CrossRefGoogle ScholarPubMed
Warren, D.L., Glor, R.E. and Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62, 28682883. https://doi.org/10.1111/j.1558-5646.2008.00482.xCrossRefGoogle ScholarPubMed
Warren, D.L., Glor, R.E. and Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607611. https://doi.org/10.1111/j.1600-0587.2009.06142.xCrossRefGoogle Scholar
Weisler, M.I., Lambrides, A.B.J., Quintus, S., Clark, J. and Worthy, T.H. (2016). Colonisation and Late Period faunal assemblages from Ofu Island, American Samoa. Journal of Pacific Archaeology 7, 119.Google Scholar
Whistler, W.A. (1978). Vegetation of the montane region of Savai’i, Western Samoa. Pacific Science 32, 7994.Google Scholar
Whistler, W.A. (1980). The vegetation of eastern Samoa. Allertonia 2, 45190.Google Scholar
Whistler, W.A. (1992). Vegetation of Samoa and Tonga. Pacific Science 46, 159178.Google Scholar
Wilkie, D.S., Bennett, E.L., Peres, C.A. and Cunningham, A.A. (2011). The empty forest revisited. Annals of the New York Academy of Sciences 1223, 120128. https://doi.org/10.1111/j.1749-6632.2010.05908.xCrossRefGoogle ScholarPubMed
Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H. and Guisan, A. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions 14, 763773. https://doi.org/10.1111/j.1472-4642.2008.00482.xCrossRefGoogle Scholar
Worthy, T.H., Hawkins, S., Bedford, S. and Spriggs, M. (2015). Avifauna from the Teouma Lapita Site, Efate Island, Vanuatu, including a new genus and species of megapode. Pacific Science 69, 205254. https://doi.org/10.2984/69.2.6CrossRefGoogle Scholar
Supplementary material: File

Gough et al. supplementary material

Gough et al. supplementary material
Download Gough et al. supplementary material(File)
File 1.1 MB