Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T13:04:47.877Z Has data issue: false hasContentIssue false

Effects of climate change and human influence in the distribution and range overlap between two widely distributed avian scavengers

Published online by Cambridge University Press:  08 June 2020

FAUSTO SÁENZ-JIMÉNEZ*
Affiliation:
Laboratorio de Ecología Funcional, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Pontificia Universidad Javeriana, Bogotá, Colombia. Fundación Neotropical, Bogotá, Colombia.
OCTAVIO ROJAS-SOTO
Affiliation:
Red de Biología Evolutiva, Laboratorio de Bioclimatología, Instituto de Ecología, A.C., Xalapa, Ver., México.
JAIRO PÉREZ-TORRES
Affiliation:
Laboratorio de Ecología Funcional, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Pontificia Universidad Javeriana, Bogotá, Colombia.
ENRIQUE MARTÍNEZ-MEYER
Affiliation:
Universidad Nacional Autónoma de México, México, D.F., México.
JAMES K. SHEPPARD
Affiliation:
San Diego Zoo Global, Institute for Conservation Research, San Diego, USA.
*
*Author for correspondence; e-mail: [email protected]

Summary

Climate change can cause geographic displacement of the ecological niche of a species, so that similar species that previously did not coexist could begin to face new interactions. Such geographic displacement and increased competition can also be exacerbated by anthropic intervention. Until less than 100 years ago, Vultur gryphus and Coragyps atratus did not coexist. Nowadays, possibly as a result of climate change, changes in the distributions of both species created areas where they are now sympatric. Through ecological niche modeling, we evaluated the possible effects that future scenarios of climate change and human influence would have on the distribution and sympatry between the two species. Our models predict that the current distribution of V. gryphus will be reduced between 18% and 24% by 2050 and between 21% and 32% by 2070. Additionally, they predict that the distribution of C. atratus will be reduced by 31–52% by the year 2050 and 15–60% by 2070. The two algorithms predict a reduction in the areas of sympatry. However, for the northern Andes the overlap between the two species will increase, reaching up to 70% in the year 2070. The distribution of C. atratus will move towards higher areas in the altitudinal gradient, and this will generate an increase in the current sympatry between both species. No clear trend was observed on the effect of human influences on the areas of overlap between the scenarios evaluated. The possible effects of climate change and anthropic intervention in future scenarios found in this study highlight the need to include these effects in future analyses and conservation programs of V. gryphus and other threatened vultures.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerly, D. D., Loarie, S. R., Cornwell, W. K., Weiss, S. B., Hamilton, H., Branciforte, R. and Kraft, N. J. B. (2010) The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16: 476487.CrossRefGoogle Scholar
Anderson, R. P., Lew, D. and Peterson A, T. (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol. Modell. 162: 211232.CrossRefGoogle Scholar
Ballejo, F., Lambertucci, S. A., Trejo, A. and De Santis, L. J. M. (2017) Trophic niche overlap among scavengers in Patagonia supports the condor-vulture competition hypothesis. Bird Conserv. Internatn. 283: 390402.Google Scholar
Barbar, F., Werenkraut, V., Morales, J. and Lambertucci, S. (2015) Emerging ecosystems change the spatial distribution of top carnivores even in poorly populated areas. PLoS ONE 10(3): e0118851.CrossRefGoogle ScholarPubMed
Beaudrot, L., Ahumada, J. A., O’Brien, T., Alvarez-Loayza, P., Boekee, K., Campos-Arceiz, A., … Andelman, S. J. (2016) Standardized assessment of biodiversity in tropical forest protected areas: The end is not in sight. PLoS Biol. 14(1): e1002357.CrossRefGoogle Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. and Courchamp, F. (2012) Impacts of climate change on the future of biodiversity. Ecol. Lett. 15: 365377.CrossRefGoogle ScholarPubMed
BirdLife International (2017) Vultur gryphus. The IUCN Red List of Threatened Species 2017. Avalilabe at: http://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T22697641A117360971.en.CrossRefGoogle Scholar
Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., … Guisan, A. (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21: 481497.CrossRefGoogle Scholar
Brook, B. W., Sodhi, N. S. and Bradshaw, C. J. (2008) Synergies among extinction drivers under global change. Trends Ecol. Evol. 23: 453460.CrossRefGoogle ScholarPubMed
Brown, J. H. and Maurer, B. A. (1989) Macroecology: the division of food and space among species on continents. Science 243: 11451150.CrossRefGoogle ScholarPubMed
Campbell, M. (2016) Vultures: Their evolution, ecology and conservation. Boca Raton, FL: CRC Press, Taylor and Francis Group.Google Scholar
Carbone, C., Turvey, S. T. and Bielby, J. (2011) Intra-guild competition and its implications for one of the biggest terrestrial predators, Tyrannosaurus rex. Proc. Biol. Sci. 278: 26822690.Google ScholarPubMed
Carrete, M., Lambertucci, S. A., Speziale, K., Ceballos, O., Travaini, A., Delibes, M., … Donázar, J. A. (2010) Winners and losers in human-made habitats: Interspecific competition outcomes in two Neotropical vultures. Anim. Conserv. 13: 390398.CrossRefGoogle Scholar
Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. and Thomas, C. D. (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045).CrossRefGoogle ScholarPubMed
Collins, M., Knutti, R., Arblaster, J. M., Dufresne, J. L., Fichefet, T., Friedlingstein, P., … Wehner, M. (2013) Long-term climate change: Projections, commitments and irreversibility. Pp. 10291136 in Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., … Midgley, P. M., eds. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change : Cambridge, UK, and New York, NY, USA: Cambridge University Press.Google Scholar
Colwell, R. K. and Rangel, T. F. (2009) Hutchinson’s duality: The once and future niche. Proc. Natl. Acad. Sci. U. S. A. 106: 1965119658.CrossRefGoogle ScholarPubMed
Del Hoyo, J., Elliot, A. and Sargatal, J. (1994) Handbook of the birds of the world. Vol 2: New world vultures to guineafowl. Barcelona: Lynx Edicions.Google Scholar
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., … Guisan, A. (2017) ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40: 114.CrossRefGoogle Scholar
Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B. and Collen, B. (2014) Defaunation in the Anthropocene. Science 345(6195): 401406.CrossRefGoogle ScholarPubMed
ESRI (2010) ArcGis 10. Redlands, CA: Environmental System Research Institute, Inc.Google Scholar
Feeley, K. J., Rehm, E. M. and Machovina, B. (2012) Perspective: The responses of tropical forest species to global climate change: acclimate, adapt, migrate or go extinct? Front.Biogeogr. 4(2): 6984.CrossRefGoogle Scholar
Ferguson-Lees, J. and Christie, D. (2001) Raptors of the world. London, UK: Christopher Helm.Google Scholar
Gargiulo, C. (2014) El cóndor andino en las sierras centrales de Argentina: Distribución, abundancia y nidificación. Córdoba, Argentina: ECOVAL Editorial.Google Scholar
Glor, R. E. and Warren, D. (2010) Testing ecological explanations for biogeographic boundaries. Evolution 65: 673683.CrossRefGoogle ScholarPubMed
Heredia, J. and Piedrabuena, J. (2010) Registros de nidificación del cóndor andino (Vultur gryphus) en las Sierras Grandes de Córdoba, Argentina. Nuestras Aves 55: 3739.Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 19651978.CrossRefGoogle Scholar
Houston, D. (1985) Evolutionary ecology of Afrotropical and Neotropical vultures in forests. Ornithol. Monogr. 36(36): 856864.CrossRefGoogle Scholar
Hughes, L. (2000) Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 15: 5661.CrossRefGoogle ScholarPubMed
Hutchinson, G. E. (1957) Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22: 415427.CrossRefGoogle Scholar
IPCC (2014) Climate change 2013: The physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Jarvis, A., Reuter, H. I., Nelson, A. and Guevara, E. (2008) Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT).Google Scholar
Jezkova, T. and Wiens, J. J. (2016) Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc. R. Soc. Lond. B. Biol. Sci. 283: 20162104.Google ScholarPubMed
La Sorte, F. A. and Jetz, W. (2010) Avian distributions under climate change: towards improved projections. J. Exp. Biol. 213: 862869.CrossRefGoogle ScholarPubMed
Lambertucci, S. A. (2007) Biología y conservación del cóndor Andino. Hornero 22(2): 149158.Google Scholar
Lambertucci, S. A. (2010) Size and spatio-temporal variations of the Andean condor Vultur gryphus population in north-west Patagonia, Argentina: communal roosts and conservation. Oryx 44: 441447.CrossRefGoogle Scholar
Lambertucci, S. A. and Mastrantuoni, O. A. (2008) Breeding behavior of a pair of free-living Andean Condors. J. Field Ornithol. 79: 147151.CrossRefGoogle Scholar
Lambertucci, S. A., Alarcón, P. A. E., Hiraldo, F., Sanchez-Zapata, J. A., Blanco, G. and Donázar, J. A. (2014) Apex scavenger movements call for transboundary conservation policies. Biol. Conserv. 170: 145150.CrossRefGoogle Scholar
Lambertucci, S. A., Carrete, M., Donázar, J. A. and Hiraldo, F. (2012) Large-scale age-dependent skewed sex ratio in a sexually dimorphic avian scavenger. PLoS ONE 7(9): 16.CrossRefGoogle Scholar
Lambertucci, S. A., Donázar, J. A. and Hiraldo, F. (2010) Poisoning people and wildlife with lead ammunition: Time to stop. Environ. Sci. Technol. 44: 77597760.CrossRefGoogle ScholarPubMed
Lambertucci, S. A., Donázar, J. A., Huertas, A. D., Jiménez, B., Sáez, M., Sanchez-Zapata, J. A. and Hiraldo, F. (2011) Widening the problem of lead poisoning to a South-American top scavenger: Lead concentrations in feathers of wild Andean condors. Biol. Conserv. 144: 14641471.CrossRefGoogle Scholar
Lambertucci, S. A., Speziale, K. L., Rogers, T. E. and Morales, J. M. (2009) How do roads affect the habitat use of an assemblage of scavenging raptors? Biodivers. Conserv. 18: 20632074.CrossRefGoogle Scholar
Lawler, J. J., Shafer, S. L., White, D., Kareiva, P., Maurer, E. P., Blaustein, A. R. and Bartlein, P. J. (2009) Projected climate-induced faunal change in the Western Hemisphere. Ecology 90: 588 597.CrossRefGoogle ScholarPubMed
Maclean, I. M. and Wilson, R. J. (2011) Recent ecological responses to climate change support predictions of high extinction risk. Proc. Natl. Acad. Sci. U.S.A. 108: 1233712342.CrossRefGoogle ScholarPubMed
Margalida, A., and Colomer, M. A. (2012) Modelling the effects of sanitary policies on European vulture conservation. Sci. Rep. 2: 753.CrossRefGoogle ScholarPubMed
Markandya, A., Taylor, T., Longo, A., Murty, M. N., Murty, S. and Dhavala, K. (2008) Counting the cost of vulture decline – an appraisal of the human health and other benefits of vultures in India. Ecol. Econ. 67: 194204.CrossRefGoogle Scholar
Márquez, C., Bechard, M., Gast, F. and Vanegas, V. (2005) Aves rapaces diurnas de Colombia. Bogotá, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.Google Scholar
Martínez, J. S., Becerra, M. T., Cuesta, F. and Qiñonez, L. (2009) Atlas de los Andes del Norte y Centro. Lima, Perú: Secretaría General de la Comunidad Andina.Google Scholar
McGahan, J. (1972) Behaviour and ecology of the Andean Condor. Ph.D. thesis, Univ. of Wisconsin, Wisconsin, USA.Google Scholar
McKinney, M. L. and Lockwood, J. L. (1999) Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14: 450453.CrossRefGoogle ScholarPubMed
Moleón, M., Sánchez-Zapata, J. A., Margalida, A., Carrete, M., Owen-Smith, N. and Donázar, J. A. (2014) Humans and scavengers: The evolution of interactions and ecosystem services. BioScience 64: 394403.CrossRefGoogle Scholar
Mundy, P., Butchart, D., Ledger, J. and Piper, S. (1992) The vultures of Africa. London, UK: Academic Press.Google Scholar
Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M. and Anderson, R. P. (2014) ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods. Ecol. Evol. 5: 11981205.CrossRefGoogle Scholar
Ogada, D. L., Torchin, M. E., Kinnaird, M. F. and Ezenwa, V. O. (2012) Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26: 453460.CrossRefGoogle ScholarPubMed
Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37: 637669.CrossRefGoogle Scholar
Parmesan, C. and Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 3742.CrossRefGoogle ScholarPubMed
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I.-C., … Griffis, R. (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355: 19.CrossRefGoogle ScholarPubMed
Peterson, A. T., Papeş, M. and Soberón, J. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell. 213: 6372.CrossRefGoogle Scholar
Petipierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C. and Guisan, A. (2012) Climatic niche shifts are rare among terrestrial plants invaders. Science 335: 13441348.CrossRefGoogle Scholar
Phillips, S. J. (2017) A brief tutorial on Maxent. Princeton, NJ: AT&T Research. http://biodiversityinformatics.amnh.org/open_source/maxent/. Downloaded on 08 October 2019.Google Scholar
Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006) Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190: 231259.CrossRefGoogle Scholar
Phillips, S. J. and Dudík, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161175.CrossRefGoogle Scholar
Pimm, S., Raven, P., Peterson, A., Şekercioğlu, Ç. H. and Ehrlich, P. R. (2006) Human impacts on the rates of recent, present, and future bird extinctions. Proc. Natl. Acad. Sci. U. S. A. 103: 1094110946.CrossRefGoogle ScholarPubMed
Renjifo, L. M., Amaya-Villarreal, A. M., Burbano-Girón, J. and Velásquez-Tibatá, J. (2016) Libro rojo de aves de Colombia, Volumen II: Ecosistemas abiertos, secos, insulares, acuáticos continentales, marinos, tierras altas del Darién y Sierra Nevada de Santa Marta y bosques húmedos del centro, norte y oriente del país. Bogotá, Colombia: Editorial Pontificia Universidad Javeriana e Instituto Alexander von Humboldt.Google Scholar
Ricciardi, A. (2007) Are modern biological invasions an unprecedented form of global change? Conserv. Biol. 21: 329336.CrossRefGoogle ScholarPubMed
Rice, A. M. and Pfennig, D. W. (2008) Analysis of range expansion in two species undergoing character displacement: Why might invaders generally “win” during character displacement? J. Evol. Biol. 21: 696704.CrossRefGoogle ScholarPubMed
Root, T., Price, J., Hall, K., Schneider, S., Rosenzweig, C. and Pounds, J. (2003) Fingerprints of global warming on wild animals and plants. Nature 421: 5760.CrossRefGoogle ScholarPubMed
Roth, T., Plattner, M. and Amrhein, V. (2014) Plants, birds and butterflies: Short-term responses of species communities to climate warming vary by taxon and with altitude. PLoS ONE 9(1): e82490.CrossRefGoogle ScholarPubMed
Schoener, T. W. (1970) Nonsynchronous spatial overlap oflizards in patchy habitats. Ecology. 51: 408418.CrossRefGoogle Scholar
Schneider, S. H., Semenov, S., Patwardhan, A., Burton, I., Magadza, C. H. D., Oppenheimer, M., … Yamin, F. (2007) Assessing key vulnerabilities and the risk from climate change. Pp. 779810 in Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. and Hanson, C. E.., eds. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Changenge 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II:. Cambridge, UK: Cambridge University Press.Google Scholar
Sekercioglu, C. H., Primack, R. B. and Wormworth, J. (2012) The effects of climate change on tropical birds. Biol. Conserv. 148: 118.CrossRefGoogle Scholar
Sekercioglu, C. H., Schneider, S. H., Fay, J. P. and Loarie, S. R. (2008) Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22: 140150.CrossRefGoogle ScholarPubMed
Shepard, E. L. C. and Lambertucci, S. A. (2013) From daily movements to population distributions : weather affects competitive ability in a guild of soaring birds. J. R. Soc. Interface. 10: 20130612.CrossRefGoogle Scholar
Shepard, E. L. C., Wilson, R. P., Rees, W. G., Grundy, E., Lambertucci, S. A. and Vosper, S. B. (2013) Energy landscapes shape animal movement ecology. Am. Nat. 182: 298312.CrossRefGoogle ScholarPubMed
Sommer, U. and Worm, B. (Eds.) (2002) Competition and coexistence. Berlin: Springer - Verlag.CrossRefGoogle Scholar
Stockwell, D. and Noble, I. (1992) Introduction of sets of rules from animal distribution data: a robust and informative method of data analysis. Math. Comput. Simul. 33: 385390.CrossRefGoogle Scholar
Thuiller, W., Georges, D. and Engler, R. (2015) biomod2: Ensemble platform for species distribution modeling. R package version 3.1-64. http://CRAN.Rproject.org/package=biomod2Google Scholar
Tingley, M. W., Monahan, W. B., Beissinger, S. R. and Moritz, C. (2009) Birds track their Grinnellian niche through a century of climate change. Proc. Natl. Acad. Sci. U.S.A. 106: 1963719643.CrossRefGoogle ScholarPubMed
Tonni, E. P. and Noriega, J. I. (1998) Los cóndores (Ciconiiformes, Vulturidae) de la región pampeana de la Argentina durante el Cenozoico tardío: Distribución, interacciones y extinciones. Ameghiniana 35: 141150.Google Scholar
Travis, J. M. J. (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc. Biol. Sci. 270(1514): 467473.CrossRefGoogle ScholarPubMed
Tsoar, A., Allouche, O., Steinitz, O., Rotem, D. and Kadmon, R. (2007) A comparative evaluation of presence-only methods for modeling species distribution. Divers. Distrib. 13: 397405.CrossRefGoogle Scholar
United Nations. (2014) World urbanization prospects: The 2014 revision, highlights (ST/ESA/SER.A/352). New York, USA: UN Department of Economic and Social Affairs, Population Division.Google Scholar
Valéry, L., Fritz, H. and Lefeuvre, J.-C. (2013) Another call for the end of invasion biology. Oikos 122: 11431146.CrossRefGoogle Scholar
Wallace, M. P. and Temple, S. A. (1987) Competitive interactions within and between species in a guild of avian scavengers. The Auk 104: 290295.CrossRefGoogle Scholar
Walther, G. (2010) Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365(1549): 20192024.CrossRefGoogle ScholarPubMed
Walther, G., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., … Bairlein, F. (2002) Ecological responses to recent climate change. Nature 416: 389395.CrossRefGoogle ScholarPubMed
Warren, D. L., Glor, R. E. and Turelli, M. (2008) Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62: 28682883.CrossRefGoogle ScholarPubMed
Wildlife Conservation Society, and Center for International Earth Science Information Network - CIESIN - Columbia University (2005) Global Human Influence Index (HII) Dataset (Geographic).Google Scholar
Yang, L. H. and Rudolf, V. H. W. (2010) Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecol. Lett. 13: 110.CrossRefGoogle ScholarPubMed
Supplementary material: File

Sáenz-Jiménez et al. supplementary material

Tables S1-S2
Download Sáenz-Jiménez et al. supplementary material(File)
File 26.3 KB