Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T14:02:35.011Z Has data issue: false hasContentIssue false

Distribution and habitat use of the endemic Yungas Guan Penelope bridgesi in the Southern Yungas of Argentina

Published online by Cambridge University Press:  20 June 2022

SILVANA TEJERINA
Affiliation:
Instituto de Ecorregiones Andinas, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Jujuy, Argentina.
SOFIA BARDAVID
Affiliation:
Instituto de Ecorregiones Andinas, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Jujuy, Argentina.
NATALIA POLITI
Affiliation:
Instituto de Ecorregiones Andinas, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Jujuy, Argentina.
JAIME BERNARDOS
Affiliation:
National University of La Pampa, La Pampa, Argentina.
ANNA PIDGEON
Affiliation:
University of Wisconsin Madison - Department of Forest and Wildlife Ecology, Madison, Wisconsin, USA.
LUIS OSVALDO RIVERA*
Affiliation:
Instituto de Ecorregiones Andinas, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Jujuy, Argentina.
*
*Author for correspondence; email: [email protected]

Summary

Identifying the factors that determine the spatial distribution and habitat use of species of conservation importance is essential to developing effective conservation and management strategies. As seed dispersers, guans play a key role in the regeneration of forests in South America and are threatened mainly by habitat loss and hunting pressure. The Yungas Guan Penelope bridgesi, an endemic species restricted to the Southern Yungas of Argentina and Bolivia, has been recently recognized as a separate species. To determine the conservation status of Yungas Guan, information on its distribution and habitat use is urgently needed. The objectives of our work were to 1) determine the potential distribution of the Yungas Guan in the Southern Yungas of Argentina and 2) assess the influence of environmental and anthropogenic covariables on habitat use of the species. We used records of Yungas Guan to model the potential distribution of the species with MaxEnt software and developed occupancy models to determine habitat use and influential elements of the landscape (puestos, urban areas, roads, rivers, and elevation). We obtained data on the presence of Yungas Guan with camera traps, with an effort of 6,990 camera trap-days. The total potential distribution of the species was 21,256 km2. We found that the habitat use by Yungas Guan increased with proximity to rivers and streams. The probability of habitat use was 0.27, with a range of 0.02–0.42. Of the total potential distribution area, 15,781 km2 (81%) had a probability of habitat use greater than 0.2. This study is the first in determining the potential distribution of Yungas Guan in the Southern Yungas of Salta and Jujuy provinces in Argentina and highlights the importance of conducting analyses with occupancy models to assess the influence of environmental and anthropogenic variables and threats to cracid species.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alarcón-Nieto, G. and Palacios, E. (2008) Estado de la población del Pavón Moquirrojo (Crax globulosa) en el bajo río Caquetá. Ornitol. Neotrop. 19: 371376.Google Scholar
Barton, K. (2013) MuMIn: Multi-model inference. R package version 1.15.1. http://CRAN.R-project.org/package=MuMIn.Google Scholar
Bateman, B. L., VanDerWal, J. and Johnson, C. N. (2012) Nice weather for bettongs: using weather events, not climate means, in species distribution models. Ecography 35: 306314.10.1111/j.1600-0587.2011.06871.xCrossRefGoogle Scholar
Beaudrot, L., Ahumada, J., O’Brien, T. G. and Jansen, P. A. (2019) Detecting tropical wildlife declines through camera-trap monitoring: an evaluation of the Tropical Ecology Assessment and Monitoring protocol. Oryx 53: 126129.10.1017/S0030605318000546CrossRefGoogle Scholar
Bennett, S. E. and Franco-Maya, A. M. (2002) Crax globulosa . Pp. 146149 in Renfijo, L. M., Franco-Maya, A. M., Amaya-Espinel, J. D., Kattan, G. and López-Lanús, B., eds. Libro rojo de aves de Colombia. Bogotá, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humbolt y Ministerio del Medio Ambiente.Google Scholar
Bezerra, D. M. M., de Almeida Simões, C. R. M., de Araújo, C. B., Machado, C. C. C., Maia, R. R., Alves, R. R. N. and de Araujo, H. F. P. (2019) Habitat use, density, and conservation status of the white-browed guan (Penelope jacucaca Spix, 1825). J. Nat. Conserv. 51: 125733.CrossRefGoogle Scholar
BirdLife International (2021) Species factsheet: Penelope obscura. http://www.birdlife.org. [Accessed 17 March 2021].Google Scholar
Blake, J. G., Mosquera, D., Loiselle, B. A., Swing, K. and Romo, D. (2017) Long-term variation in abundance of terres trial mammals and birds in eastern Ecuador as measured by photographic rates and occupancy estimates. J. Mammal. 98:11681178.10.1093/jmammal/gyx046CrossRefGoogle Scholar
Blake, J. G., Mosquera, D. and Salvador, J. (2013) Use of mineral licks by mammals and birds in hunted and non-hunted areas of Yasuní National Park, Ecuador. Anim. Conserv. 16: 430437.10.1111/acv.12012CrossRefGoogle Scholar
Brooks, D. M. and Strahl, S. D. (2000) Curassows, Guans and Chachalacas. Status survey and conservation action plan for cracids 2000–2004. IUCN, Gland, Switzerland and Cambridge, UK: IUCN/SSC Cracid Specialist Group.Google Scholar
Brown, A. D. and Malizia, L. R. (2004) Las Selvas Pedemontanas de las Yungas: en el umbral de la extinción. Revista Ciencia Hoy 14: 5263.Google Scholar
Brown, J. H. (1984) On the relationship between abundance and distribution of species. Am. Nat. 124: 255279.CrossRefGoogle Scholar
Burnham, K. P. and Anderson, D. R. (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer.Google Scholar
Cabrera, A. (1976) Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería. Buenos Aires: Editorial Acme.Google Scholar
Chalukian, S. (1997) Estudio preliminar de la Pava de Monte (Penelope obscura) en el Parque Nacional El Rey, Argentina. Pp. 6470 in Strahl, S. D., Beaujon, S., Brooks, D. M., Begazo, A. J., Sedaghatkish, G. and Olmos, F., eds. The Cracidae: their biology and conservation. Washington DC: Hancock House Publ.Google Scholar
Da Silva, J. M. C. and Tabarelli, M. (2000) Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil. Nature 404(6773): 7274.10.1038/35003563CrossRefGoogle Scholar
De la Peña, M.R. (1992) Guía de aves Argentinas. Tomo II. LOLA.Google Scholar
Del Hoyo, J. (1994) Family Cracidae (chachalacas, guans and curassows). Pp. 310363 in Del Hoyo, J., Elliott, A. and Sargatal, J., eds. Handbook of the birds of the world, 2, New World vultures to guineafowl. Barcelona, Splain: Lynx Edicions.Google Scholar
Del Hoyo, J. and Kirwan, G. M. (2013) Dusky-legged Guan (Penelope obscura). In Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. and de Juana, E., eds. Handbook of the birds of the world alive. Barcelona: Lynx Edicions http://www.hbw.com/node/53291.Google Scholar
Dias, D. D. M., Lima Massara, R., de Campos, C. B. and Henrique Guimarães Rodrigues, F. (2019) Human activities influence the occupancy probability of mammalian carnivores in the Brazilian Caatinga. Biotropica 51: 253265.10.1111/btp.12628CrossRefGoogle Scholar
Donovan, T. M. and Hines, J. (2007) Exercises in occupancy modeling and estimation. The University of Vermont. http://www.uvm.edu/envnr/vtcfwru/spreadsheets/occupancy.htm. [Accessed 15 March 2017].Google Scholar
Elith, J. et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 12915110.1111/j.2006.0906-7590.04596.xCrossRefGoogle Scholar
Evangelista-Vargas, O. D. and Silveira, L. F. (2018) Morphological evidence for the taxonomic status of the Bridge’s Guan, Penelope bridgesi, with comments on the validity of P. obscura bronzina (Aves: Cracidae). Zoologia (Curitiba) 35.Google Scholar
Fiske, I., Chandler, R., Miller, D., Royle, A. and Kery, M. (2013) Unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance. J. Stat. Softw.Google Scholar
Fleming, T. H., Breitwisch, R. and Whitesides, G. H. (1987) Patterns of tropical vertebrate frugivore diversity. Annu. Rev. Ecol. Systemat. 18: 91109.CrossRefGoogle Scholar
Garrett, G. and Hadley, W. (2011) Fechas y horarios fáciles con lubridate. Revista de software estadístico 40: 125.Google Scholar
Gaston, K. J., Blackburn, T. M. and Lawton, J. H. (1997) Interspecific abundance-range size relationships: An appraisal of mechanisms. J. Anim. Ecol. 66: 579601.10.2307/5951CrossRefGoogle Scholar
Gomez, M. D., Rivera, L. O., Politi, N. y Ruggera, R. A. (2016) Avifauna de los bosques ribereños de las selvas pedemontanas del noroeste argentino. Ornitol. Neotrop. 27: 4757.Google Scholar
Guix, J. C. and Ruiz, X. (1997) Weevil larvae dispersal by guans in southeastern Brazil. Biotropica 29: 522525.CrossRefGoogle Scholar
Hanley, J. A. and McNeil, B. J. (1982) The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve. Radiology 143: 2936CrossRefGoogle Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. Internatn. J. Climatol. 25: 19651978.CrossRefGoogle Scholar
Hueck, K. (1978) Los Bosques de Sudamérica. Ecología, composición e importancia económica. Berlin: Agencia Alemana de Cooperación Técnica (GTZ).Google Scholar
IGN (2016) GIS from IGN (National Geographic Institute). National Geographic Institute. [Accessed 15 February 2017].Google Scholar
Loiselle, B. A. and Blake, J. G. (1991) Temporal variation in birds and fruits along an elevational gradient in Costa Rica. Ecology 72: 180193.CrossRefGoogle Scholar
Luna-Maira, L., Alarcón-Nieto, G., Haugaasen, T. and Brooks, D. (2013) Habitat use and ecology of Wattled Curassows on islands in the lower Caquetá River, Colombia. J. Field Ornithol. 84: 2331.CrossRefGoogle Scholar
MacKenzie, D. I. and Bailey, L. L. (2004) Assessing the fit of site-occupancy models. J. Agric. Biol. Environ. Statist. 9: 300318.CrossRefGoogle Scholar
MacKenzie, D. I. and Royle, J. A. (2005) Designing occupancy studies: general advice and allocating survey effort. J. Appl. Ecol. 42: 11051114.CrossRefGoogle Scholar
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L. and Hines, J. E. (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Burlington, Massachusetts, USA: Elsevier/ Academic Press.Google Scholar
Malizia, L., Pacheco, S., Blundo, C., Brown, A. D. (2012) Caracterización altitudinal, uso y conservación de las Yungas subtropicales de Argentina. Ecosistemas 21: 5373.Google Scholar
Malzof, S. L., Bolkovic, M. L., Thompson, J. J. and Quintana, R. D. (2012) Habitat occupancy of the Dusky-legged Guan in the lower delta of the Paraná River, Argentina. Bird Conserv. Internatn. 23: 8390.CrossRefGoogle Scholar
Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L. and Erickson, W. P. (2002) Resource selection by animals: statistical design and analysis for field studies. Second edition. Norwell, Massachusetts, USA: Kluwer Academic Publishers.Google Scholar
Martinuzzi, S., Rivera, L., Politi, N., Bateman, B. L., de los Llanos, E. R., Lizárraga, L., de Bustos, M. S., Chalukian, S., Pidgeon, A. and Radeloff, V. C. (2018) Enhancing biodiversity conservation in existing land-use plans with widely available datasets and spatial analysis techniques. Environ. Conserv. 45: 252260.CrossRefGoogle Scholar
McDonald, P. J., Griffiths, A. D., Nano, C. E., Dickman, C. R., Ward, S. J. and Luck, G. W. (2015) Landscape-scale factors determine occupancy of the critically endangered central rock-rat in arid Australia: the utility of camera trapping. Biol. Conserv. 191: 93100.CrossRefGoogle Scholar
Michalski, L. J., Norris, D., de Oliveira, T. G. and Michalski, F. (2015) Ecological Relationships of MesoScale Distribution in 25 Neotropical Vertebrate Species. PLoS ONE 10(5): e0126114.CrossRefGoogle Scholar
Ministerio de Ambiente y Desarrollo Sustentable and Aves Argentinas (2017) Categorización de las Aves de la Argentina (2015). Buenos Aires, Argentina: Informe del Ministerio de Ambiente y Desarrollo Sustentable de la Nación y de Aves Argentinas, edición electrónica.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. and Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853858.10.1038/35002501CrossRefGoogle ScholarPubMed
O’Brien, T. G. and Kinnaird, M. F. (2008) A picture is worth a thousand words: the application of camera trapping to the study of birds. Bird Conserv. Internatn. 18: 144162.CrossRefGoogle Scholar
O’Connell, A. F. and Bailey, L. L. (2011) Inference for occupancy and occupancy dynamics. Pp. 191-204 in Camera traps in animal ecology. Tokyo: Springer.CrossRefGoogle Scholar
Paglia, A. P., Rezende, D. T., Koch, I., Kortz, A. R. and Donatti, C. (2012) Modelos de distribuição de espécies em estratégias para a conservação da biodiversida de epara Adaptação baseada em Ecossistemas frente a mudanças climáticas. Natureza & Conservação 10: 231234.CrossRefGoogle Scholar
Palmer, G. C. and Bennett, A. F. (2006) Riparian zones provide for distinct bird assemblages in forest mosaics of southeast Australia. Biol. Conserv. 130: 447457.CrossRefGoogle Scholar
Pearson, R. G. and Dawson, T. P. (2003) Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12: 361371.CrossRefGoogle Scholar
Pereira-Ribeiro, J., Ferreguetti, A. C., Tomas, W. M., Bergallo, H. G., Rocha, C. F. D. and Brooks, D. M. (2018) The rusty-margined guan (Penelope superciliaris) in the Brazilian Atlantic rain forest: density, population size, activity and habitat use. Wildl. Res. 45: 551558.CrossRefGoogle Scholar
Pérez-Irineo, G. and Santos-Moreno, A. (2017) Occupancy, relative abundance, and activity patterns of great curassow (Crax rubra) in southeastern Mexico. Ornitol. Neotrop. 28: 313320.Google Scholar
Perovic, P., de Bustos, S., Rivera, L., Arguedas Mora, S. and Lizárraga, L. (2015) Strategic plan for conservation of Jaguars in the Southern Yungas of Argentina . Salta, Argentina: National Park Administration, Secretary of Environment of Salta Province, Secretary of Environmental Management of Jujuy Province, and Latin-American School of Protected Areas .Google Scholar
Phillips, S. J. (2017) A brief tutorial on Maxent. Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. [Accessed 09 August 2021].Google Scholar
Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006) Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190: 231259.CrossRefGoogle Scholar
Pidgeon, A. M., Rivera, L., Martinuzzi, S., Politi, N. and Bateman, B. (2015) Will representation targets based on area protect critical resources for the conservation of the Tucuman parrot? The Condor 117: 503517.CrossRefGoogle Scholar
Politi, N. and Rivera, L. (2019) Limitantes y avances para alcanzar el manejo forestal sostenible en las Yungas Australes. Ecología Austral 29: 138145.CrossRefGoogle Scholar
R Core Team (2018) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/Google Scholar
Remsen, J. V. Jr., Areta, J. I., Bonaccorso, E., Claramunt, S., Jaramillo, A., Lane, D. F., Pacheco, J. F., Robbins, M. B., Stiles, F. G. y Zimmer, K. J. (2021) Una clasificación de las especies de aves de América del Sur. Sociedad Americana de Ornitología. Versión [16 march 2021] http://www.museum.lsu.edu/~Remsen/SACCBaseline.htmGoogle Scholar
Schank, C., Mendoza, E., Vettorazzi, M. G., Cove, M. V., Jordan, C. A., O‘Farrill, G. and Leonardo, R. (2015) Integrating current range-wide occurrence data with species distribution models to map the potential distribution of Baird’s Tapir. The Newsletter of the IUCN/SSC Tapir Specialist Group 24: 1525.Google Scholar
Srbek-Araujo, A. C., Silveira, L. F., Chiarello, A. G. (2012) The Redbilled Curassow (Crax blumenbachii): social organization, and daily activity patterns. Wilson J. Ornithol. 124: 321327.CrossRefGoogle Scholar
Steenweg, R., Whittington, J., Hebblewhite, M., Forshner, A., Johnston, B., Petersen, D., Shepherd, B. and Lukacs, P. M. (2016) Camera-based occupancy monitoring at large scales: Power to detect trends in grizzly bears across the Canadian Rockies. Biol. Conserv. 201: 192200.CrossRefGoogle Scholar
Stotz, D. F., Fitzpatrick, J. W., Parker, T. A. and Moskovits, D. K. (1996) Aves neotropicales: ecología y conservación. Chicago: University of Chicago Press.Google Scholar
Thornton, D. H., Branch, L. C. and Sunquist, M. E. (2012) Response of large galliforms and tinamous (Cracidae, Phasianidae, Tinamidae) to habitat loss and fragmentation in northern Guatemala. Oryx 46: 567576.10.1017/S0030605311001451CrossRefGoogle Scholar
Tortorelli, L. (1956) Maderas y bosques Argentinos. Buenos Aires: Acme.Google Scholar
VanDerWal, J., Shoo, L. P., Graham, C. and Williams, S. E. (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol. Modell. 220: 589594.10.1016/j.ecolmodel.2008.11.010CrossRefGoogle Scholar
Zalazar, S., Benitez, A. L. and Di Giacomo, A. S. (2018) Determining the factors that influence the occurrence of Bare-faced Curassows (Crax fasciolata) in Humid Chaco, northern Argentina. Avian Conserv. Ecol. 13: 1.CrossRefGoogle Scholar
Supplementary material: File

Tejerina et al. supplementary material

Tejerina et al. supplementary material

Download Tejerina et al. supplementary material(File)
File 3.9 MB