Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T20:07:15.208Z Has data issue: false hasContentIssue false

Differences in the dietary habits of Verreaux’s Eagles Aquila verreauxii between peri-urban and rural populations

Published online by Cambridge University Press:  24 February 2020

KAILEN PADAYACHEE*
Affiliation:
Tshwane University of Technology - Nature Conservation, Pretoria0001, South Africa.
GERARD MALAN
Affiliation:
Tshwane University of Technology - Nature Conservation, Pretoria0001, South Africa.
NICO LÜBCKER
Affiliation:
University of Pretoria - Zoology and Entomology, Pretoria, Gauteng, South Africa.
STEPHAN WOODBORNE
Affiliation:
University of the Witwatersrand - iTemba Labs, Johannesburg-Braamfontein, GautengSouth Africa.
GRANT HALL
Affiliation:
University of Pretoria - Zoology and Entomology, Pretoria, Gauteng, South Africa.
*
*Author for correspondence; email: [email protected]

Summary

Differences in the diets of urban and rural avian predators could indicate potential niche vulnerability in a particular habitat. This study compares the core-isotopic niche areas and diet disparity of a declining peri-urban Verreaux’s Eagle Aquila verreauxii population with a stable rural population in South Africa. In addition to stable isotope analyses, the diet of the peri-urban Verreaux’s Eagles was investigated using camera trap footage of prey delivered during the nesting season. Dominant prey consisted of species with a mixed diet of plants with a C3 and/or C4 photosynthetic pathway (browsers and grazers). Rock hyrax Procavia capensis contributed 60% of the total diet composition, scrub hare Lepus saxatilis 26% and Helmeted Guineafowl Numida meleagris 22%. The core-isotopic niche area for each population was calculated using bulk carbon (δ13C) and nitrogen (δ15N) stable isotope values chronological measured along the length of 18 feathers from 21 nests. The isotopic niche of the rural eagle population revealed that they consume prey from multiple trophic levels with a C3-plant-dominated prey base (browsers), likely including small carnivores. In contrast the isotopic niche of the peri-urban Verreaux’s Eagles correlated with the mixed mammalian and avian food-niche determined from camera trapping, confirming that the peri-urban population mainly hunted three abundant species that are all narrowly associated with modified human habitats. The decline in the Magaliesberg Verreaux’s Eagle population is, therefore, unlikely to be due to constraints in their dietary niche, as raptors benefit from the diversity and abundance of human-commensal prey associated with the peri-urban habitats.

Type
Research Article
Copyright
© BirdLife International, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, D. (1984) Black Eagles in the Magaliesberg. Bokmakierie. 36: 5557.Google Scholar
Allan, D. (1988) Breeding success, nest spacing and territory size of Black Eagles in the Magaliesberg, South Africa. Gabar 3: 7681Google Scholar
Camp, R. J. and Knight, R. L. (1998) Rock climbing and cliff bird communities at Joshua Tree National Park, CaliforniaWildl. Soc. B26: 892898.Google Scholar
Department of Environmental Affairs (2015) South Africa welcomes the designation of Magaliesberg and Gouritz Cluster as new South African Biosphere Reserves. Media releases. Department of Environmental Affairs. Pretoria. [Online]. Available from: https://www.environment.gov.za/mediarelease/magaliesberggouritzcluster_newsouthafricanbiospherereserve [Accessed: 11/09/2015].Google Scholar
Baker, S. E. (2013) Accumulation behaviours and taphonomic signatures for extant Verreaux’s Eagle nests, Aquila verreauxii, in Southern Africa. M.Sc. Thesis. University of the Witwatersrand, Johannesburg, South Africa.Google Scholar
Bateman, P. P. and Fleming, P. A. (2012) Big city life: carnivores in urban environments. J. Zool. 287: 123.CrossRefGoogle Scholar
Boshoff, A. F., Palmer, N. G., Avery, G, Davies, R. A. and Jarvis, M. J. (1991) Biogeographical and topographical variation in the prey of the Black Eagle in the Cape Province, South Africa. Ostrich 62: 5972.CrossRefGoogle Scholar
Cerling, T. E. and Harris, J. M. (1999) Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studiesOecologia 120: 347363.CrossRefGoogle ScholarPubMed
Chace, J. F. and Walsh, J. J. (2006) Urban effects on native avifauna: a review. Landscape Urban Plan74: 4669.CrossRefGoogle Scholar
Codron, D., Codron, J., Sponheimer, M., Lee-Thorp, J. A., Robinson, T., Grant, C. C. and De Ruiter, D. (2005) Assessing diet in savanna herbivores using stable carbon isotope ratios of faecesKoedoe 48: 115124.CrossRefGoogle Scholar
Contesse, P., Hegglin, D., Gloor, S., Bontadina, F. and Deplazes, P. (2004) The diet of urban foxes (Vulpes vulpes) and the availability of anthropogenic food in the city of Zurich, Switzerland. Z. Säugetierkd69: 8195.Google Scholar
Coplen, T. B. (1994) Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (technical report)Pure Appl. Chem66: 273276.CrossRefGoogle Scholar
Ditchkoff, S. S., Saalfeld, S. T. and Gibson, C. J. (2006) Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosyst. 9: 512.CrossRefGoogle Scholar
Ellis, D. H., Craig, T., Craig, E., Postupalsky, S., LaRue, C. T., Nelson, R. W., Anderson, D. W., Henny, C. J., Watson, J., Millsap, B. A., Dawson, J. W., Cole, K. L., Martin, E. M., Margalida, A. and Kung, P. (2009) Unusual raptor nests around the worldJ. Raptor Res43: 175199.CrossRefGoogle Scholar
Faeth, S. H., Warren, P. S., Shochat, E. and Marussich, W. A. (2005) Trophic dynamics in urban communities. Bioscience. 55: 399407.CrossRefGoogle Scholar
Fuller, T. K., and Sievert, P. R. (2001) Carnivore demography and the consequences of changes in prey availability. Pp 163178 in Gittleman, J. L., Funk, S. M., Macdonald, D. and Wayne, R. K., eds. Carnivore conservation. Cambridge: Cambridge University Press.Google Scholar
Gargett, V. (1990The black eagle: a study. Johannesburg: Acorn Books.Google Scholar
Goddard, M. A., Dougill, A. J. and Benton, T. G. (2010) Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol. Evol. 25: 9098.CrossRefGoogle ScholarPubMed
González, L. M., Arroyo, B. E., Margalida, A., Sánchez, R. and Oria, J. (2006) Effect of human activities on the behaviour of breeding Spanish imperial eagles (Aquila adalberti): management implications for the conservation of a threatened speciesAnim. Conserv9: 8593.CrossRefGoogle Scholar
Grafton, R. N. (1971) Winter food of the helmeted guineafowl in Natal. Ostrich. 8: 475485.Google Scholar
Grecian, W. J., McGill, R. A., Phillips, R. A., Ryan, P. G. and Furness, R. W. (2015) Quantifying variation in δ 13C and δ 15N isotopes within and between feathers and individuals: Is one sample enough? Mar. Bio162: 733741.Google Scholar
Guzzo, M. M., Haffner, G. D., Legler, N. D., Rush, S. A. and Fisk, A. T. (2013) Fifty years later: trophic ecology and niche overlap of a native and non-indigenous fish species in the western basin of Lake ErieBio. Invasions 15: 16951711.Google Scholar
Hager, S. B. (2009) Human-related threats to urban raptors. J. Raptor Res. 43: 210226.CrossRefGoogle Scholar
Iezekiel, S., Bakaloudis, D. E. and Vlachos, C. G. (2004) The diet of the Bonelli’s eagle Hieraaetus fasciatus in Cyprus. Pp. 581–587 in Chancellor, R. D. and Meyburg, B. U., eds. Raptors worldwide: Proceedings of the VI World Conference on Birds of Prey and Owls, Budapest, Hungary, 18-23 May 2003. World Working Group on Birds of Prey and Owls, Hungary.Google Scholar
Jackson, A. L., Inger, R., Parnell, A. C. and Bearhop, S. (2011) Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R.J. Anim. Ecol80: 595602.CrossRefGoogle Scholar
Jenkins, A. R. (2009) Cliff nest surveys: Raptors that nest on cliffs. Pp. 97129 in Malan, G., ed. Raptor survey and monitoring-a field guide for African birds of prey. Pretoria: Briza Publications.Google Scholar
Krahn, M. M., Herman, D. P. and Matkin, C. O. (2007) Use of chemical tracers in assessing the diet and foraging regions of eastern North Pacific killer whales. Mar. Environ. Res. 63: 91114.CrossRefGoogle ScholarPubMed
Kruger, T. L. (2010) Long term prospects for the persistence of breeding Verreaux’s Eagles (Aquila verreauxii) at the Walter Sisulu National Botanical Garden, Johannesburg. Ph.D. Thesis. University of the Witwatersrand, Johannesburg, South Africa.Google Scholar
Layman, C. A., Arrington, D. A., Montaña, C. G. and Post, D. M. (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology88: 4248.CrossRefGoogle ScholarPubMed
Lim, H. C. and Sodhi, N. S. (2004) Responses of avian guilds to urbanisation in a tropical cityLandscape Urban Plan66: 199215.CrossRefGoogle Scholar
López-López, P. and Urios, V. (2010) Use of digital trail cameras to study Bonelli’s Eagle diet during the nestling period. Ital. J. of Zool. 77: 289295.CrossRefGoogle Scholar
Lowther, A. D., Harcourt, R. G., Page, B. and Goldsworthy, S. D. (2013) Steady as he goes: at-sea movement of adult male Australian sea lions in a dynamic marine environmentPlos One8: 74348.CrossRefGoogle Scholar
Malan, G. and Benn, G. A. (1999) Agricultural land-use patterns and the decline of the helmeted guineafowl Numida meleagris (Linnaeus 1766) in KwaZulu-Natal, South Africa. Agr. Ecosyst. Environ. 73: 2940.CrossRefGoogle Scholar
McDonnell, M. J. and Hahs, A. K. (2008) The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directionsLandscape Ecol23: 11431155.CrossRefGoogle Scholar
McKinney, M. L. (2002) Urbanization, biodiversity, and conservation. The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience 52: 883890.CrossRefGoogle Scholar
McKinney, M. L. (2008) Effects of urbanization on species richness: a review of plants and animalsUrban Ecosyst11: 161176.CrossRefGoogle Scholar
McPherson, S. C., Brown, M. and Downs, C. T. (2015) Diet of the crowned eagle (Stephanoaetus coronatus) in an urban landscape: potential for human-wildlife conflict? Urban Ecosyst. 19: 114.Google Scholar
Medley, K. E., McDonnell, M. J. and Pickett, S. T. A. (1995) Forest-landscape structure along an urban-to-rural gradient. Professional Geographer 47: 159168.CrossRefGoogle Scholar
Mentis, M. T., Poggenpoel, B. and Maguire, R. R. K. (1975) Food of Helmeted Guineafowl in highland Natal. Pp. 8283 in Hockey, P. A. R. Dean, W. R. J. and Ryan, P. G., eds. Roberts’ birds of southern Africa. VIIth edn. Cape Town, South Africa: The Trustees of the John Voelcker Bird Book Fund.Google Scholar
Mostert, T. H. C. (2006) Vegetation ecology of the Soutpansberg and Blouberg area in the Limpopo Province. Ph.D. Thesis. University of Pretoria, South Africa.Google Scholar
Mostert, T. H., Bredenkamp, G. J., Klopper, H. L., Verwey, C., Mostert, R. E. and Hahn, N. (2008) Major vegetation types of the Soutpansberg Conservancy and the Blouberg Nature Reserve, South Africa. Koedoe 50: 3248.CrossRefGoogle Scholar
Mucina, L. and Rutherford, M. C., eds. (2010) The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. Pretoria: South African National Biodiversity Institute.Google Scholar
Murgatroyd, M., Underhill, L. G., Rodrigues, L. and Amar, A. (2016a) The influence of agricultural transformation on the breeding performance of a top predator: Verreaux’s Eagles in contrasting land use areas. Condor 118: 238252.CrossRefGoogle Scholar
Murgatroyd, M., Avery, G., Underhill, L. G. and Amar, A. (2016b) Adaptability of a specialist predator: The effects of land use on diet diversification and breeding performance of Verreaux’s Eagles. J. Avian Biol. 47: 834845.CrossRefGoogle Scholar
Naylor, A. J. (2016) The occurrence, behaviour and public perception of rock hyraxes, Procavia capensis, in urban areas. M.Sc. Thesis. University of the Witwatersrand, Johannesburg, South Africa.Google Scholar
Newsome, S. D., Collins, P. W. and Sharpe, P. (2015a) Foraging ecology of a reintroduced population of breeding Bald Eagles on the Channel Islands, California, USA, inferred from prey remains and stable isotope analysisCondor 117: 396413.CrossRefGoogle Scholar
Newsome, S. D., Garbe, H. M., Wilson, E. C. and Gehrt, S. D. (2015b) Individual variation in anthropogenic resource use in an urban carnivore. Oecologia 178: 115128.CrossRefGoogle Scholar
Newsome, S. D., Ralls, K., Job, C. V. H., Fogel, M. L. and Cypher, B. L. (2010) Stable isotopes evaluate exploitation of anthropogenic foods by the endangered San Joaquin kit fox (Vulpes macrotis mutica). J. Mammal91: 13131321.CrossRefGoogle Scholar
Niemelä, J. (1999) Ecology and urban planning. Biodivers. Conserv. 8: 119131.CrossRefGoogle Scholar
Ogada, D. L. and Kibuthu, P. M. (2009) Impacts of agriculture on the diet and productivity of Mackinder's Eagle Owls (Bubo capensis mackenderi) in Kenya. Biotropica 41: 485492.CrossRefGoogle Scholar
Palma, l., Beja, P., Pias, M. and Cansela da Fanseca, L. (2006) Why do raptors take domestic prey? The case of Bonelli’s eagles and pigeons. J. Appl. Ecol. 43: 10751086.CrossRefGoogle Scholar
Palomino, D. and Carrascal, L. M. (2007) Habitat associations of a raptor community in a mosaic landscape of Central Spain under urban development. Landscape Urban Plan. 83: 268274.CrossRefGoogle Scholar
Parnell, A. C., Inger, R., Bearhop, S. and Jackson, A. L. (2010) Source partitioning using stable isotopes: coping with too much variationPLoS One 5: 9672.CrossRefGoogle ScholarPubMed
Phillips, R. L., McEneaney, T. P. and Beske, A. E. (1984) Population densities of breeding Golden Eagles in Wyoming. Wildl. Soc. B. 12: 269273.Google Scholar
Post, D. M. (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptionsEcology 83: 703718.CrossRefGoogle Scholar
R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.URL http://www.R-project.org/.Google Scholar
Richardson, C. T. and Miller, C. K. (1997) Recommendations for protecting raptors from human disturbance: a reviewWildl. Soc. B. 25: 634638.Google Scholar
Rogers, A. S., Destefano, S. and Ingraldi, M. F. (2005) Quantifying Northern Goshawk diets using remote cameras and observations from blinds. J. Raptor Res. 39: 303309.Google Scholar
Rooney, N.McCann, K. S.Gellner, G. and MooreJ. C. (2006Structural asymmetry and the stability of diverse food websNature442265269.CrossRefGoogle ScholarPubMed
Rudd, H., Vala, J. and Schaefer, V. (2002) Importance of backyard habitat in a comprehensive biodiversity conservation strategy: A connectivity analysis of urban green spaces. Restor. Ecol. 10: 368375.CrossRefGoogle Scholar
Schimmelmann, A., Qi, H., Coplen, T. B., Brand, W. A., Fong, J., Meier-Augenstein, W., Kemp, H., Toman, B., Ackermann, A., Assonov, S., Aerts-Bijma, A. T., Brejcha, R., Chikaraishi, Y., Darwish, T., Elsner, M., Gehre, M., Geilmann, H. , Gröning, M., Hélie, J., Herrero-Martín, S., Meijer, H. A. J., Sauer, P. E., Sessions, A. L. and Werner, R. A. (2016) Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl esters, glycines, L-valines, polyethylenes, and oilsAnal. Chem88: 42944302.CrossRefGoogle ScholarPubMed
Schwilk, D. W., Keeley, J. E. and Bond, W. J. (1997) The intermediate disturbance hypothesis does not explain fire and diversity pattern in fynbosPlant Ecol132: 7784.CrossRefGoogle Scholar
Skinner, J. D. and Chimimba, C. T. (2005) The mammals of the Southern African subregion. Cape Town: Cambridge University Press.CrossRefGoogle Scholar
Symes, C. T. and Kruger, T. L. (2012) The persistence of an apex avian predator, Verreaux’s Eagle, Aquila verreauxii in a rapidly urbanizing environmentAfr. J. Wildl. Res42: 4553.CrossRefGoogle Scholar
Taylor, M. R., Peacock, F. and Wanless, R. W., eds. (2015) The Eskom Red Data Book of Birds of South Africa, Lesotho and Swaziland. Johannesburg: BirdLife South Africa.Google Scholar
Taylor, P. J., Nengovhela, A., Linden, J. and Baxter, R. M. (2015) Past, present, and future distribution of Afromontane rodents (Muridae: Otomys) reflect climate-change predicted biome changes. Mammalia 80: 359375.Google Scholar
Taylor, P. J., Sowler, S., Schoeman, M. C. and Monadjem, A. (2013) Diversity of bats in the Soutpansberg and Blouberg Mountains of northern South Africa: complementarity of acoustic and non-acoustic survey methodsAfr. J. Wildl. Res43: 1226.CrossRefGoogle Scholar
Tieszen, L. L., Boutton, T. W., Ottichilo, W. K., Nelson, D. E. and Brandt, D. H. (1989) An assessment of long‐term food habits of Tsavo elephants based on stable carbon and nitrogen isotope ratios of bone collagenAfr. J. Ecol27: 219226.CrossRefGoogle Scholar
Village, A. (1982) The diet of kestrels in relation to vole abundanceBird Study. 29: 129138.CrossRefGoogle Scholar
Vogel, J. C. (1978) Isotopic assessment of the dietary habits of ungulates. S. Afr. J. Sci. 74: 298301.Google Scholar
Whitfield, D. P., Fielding, A. H., McLeod, D. R. A. and Haworth, P. F. (2004) The effects of persecution on age of breeding and territory occupation in golden eagles in ScotlandBiol. Conserv118: 249259.CrossRefGoogle Scholar
Whittington-Jones, C., Wagner, T. and Muller, P. (2010) Aerial survey of raptors in the Magaliesberg, South AfricaGabar 21: 4151.Google Scholar
Whittington-Jones, C., West, S., Neser, W., Davidson, I., Saunders, P. and Saunders, N. (2012) The status and breeding success of Verreaux’s Eagles Aquila verreauxii in the Magaliesberg, South Africa. Gabar 4: 715.Google Scholar
Willems, E. P., Barton, R. A., and Hill, R. A. (2009) Remotely sensed productivity, regional home range selection, and local range use by an omnivorous primate. Behav. Ecol. 20: 985992.CrossRefGoogle Scholar
Yalden, D. W. (1980) Notes on the diet of urban KestrelsBird Study27: 235238.CrossRefGoogle Scholar