We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Imaging platforms for generating highly multiplexed histological images are being continually developed and improved. Significant improvements have also been made in the accuracy of methods for automated cell segmentation and classification. However, less attention has focused on the quantification and analysis of the resulting point clouds, which describe the spatial coordinates of individual cells. We focus here on a particular spatial statistical method, the cross-pair correlation function (cross-PCF), which can identify positive and negative spatial correlation between cells across a range of length scales. However, limitations of the cross-PCF hinder its widespread application to multiplexed histology. For example, it can only consider relations between pairs of cells, and cells must be classified using discrete categorical labels (rather than labeling continuous labels such as stain intensity). In this paper, we present three extensions to the cross-PCF which address these limitations and permit more detailed analysis of multiplex images: topographical correlation maps can visualize local clustering and exclusion between cells; neighbourhood correlation functions can identify colocalization of two or more cell types; and weighted-PCFs describe spatial correlation between points with continuous (rather than discrete) labels. We apply the extended PCFs to synthetic and biological datasets in order to demonstrate the insight that they can generate.
Large-scale multiplex tissue analysis aims to understand processes such as development and tumor formation by studying the occurrence and interaction of cells in local environments in, for example, tissue samples from patient cohorts. A typical procedure in the analysis is to delineate individual cells, classify them into cell types, and analyze their spatial relationships. All steps come with a number of challenges, and to address them and identify the bottlenecks of the analysis, it is necessary to include quality control tools in the analysis workflow. This makes it possible to optimize the steps and adjust settings in order to get better and more precise results. Additionally, the development of automated approaches for tissue analysis requires visual verification to reduce skepticism with regard to the accuracy of the results. Quality control tools could be used to build users’ trust in automated approaches. In this paper, we present three plugins for visualization and quality control in large-scale multiplex tissue analysis of microscopy images. The first plugin focuses on the quality of cell staining, the second one was made for interactive evaluation and comparison of different cell classification results, and the third one serves for reviewing interactions of different cell types.
Cryogenic electron tomography (cryoET) is capable of determining in situ biological structures of molecular complexes at near-atomic resolution by averaging half a million subtomograms. While abundant complexes/particles are often clustered in arrays, precisely locating and seamlessly averaging such particles across many tomograms present major challenges. Here, we developed TomoNet, a software package with a modern graphical user interface to carry out the entire pipeline of cryoET and subtomogram averaging to achieve high resolution. TomoNet features built-in automatic particle picking and three-dimensional (3D) classification functions and integrates commonly used packages to streamline high-resolution subtomogram averaging for structures in 1D, 2D, or 3D arrays. Automatic particle picking is accomplished in two complementary ways: one based on template matching and the other using deep learning. TomoNet’s hierarchical file organization and visual display facilitate efficient data management as required for large cryoET datasets. Applications of TomoNet to three types of datasets demonstrate its capability of efficient and accurate particle picking on flexible and imperfect lattices to obtain high-resolution 3D biological structures: virus-like particles, bacterial surface layers within cellular lamellae, and membranes decorated with nuclear egress protein complexes. These results demonstrate TomoNet’s potential for broad applications to various cryoET projects targeting high-resolution in situ structures.
We revisit the topic of common lines between projection images in single-particle cryo-electron microscopy (cryo-EM). We derive a novel low-rank constraint on a certain 2n × n matrix storing properly scaled basis vectors for the common lines between n projection images of one molecular conformation. Using this algebraic constraint and others, we give optimization algorithms to denoise common lines and recover the unknown 3D rotations associated with the images. As an application, we develop a clustering algorithm to partition a set of noisy images into homogeneous communities using common lines, in the case of discrete heterogeneity in cryo-EM. We demonstrate the methods on synthetic and experimental datasets.
Microscopy is a widely used method in biological research to observe the morphology and structure of cells. Amongst the plethora of microscopy techniques, fluorescent labeling with dyes or antibodies is the most popular method for revealing specific cellular organelles. However, fluorescent labeling also introduces new challenges to cellular observation, as it increases the workload, and the process may result in nonspecific labeling. Recent advances in deep visual learning have shown that there are systematic relationships between fluorescent and bright-field images, thus facilitating image translation between the two. In this article, we propose the cross-attention conditional generative adversarial network (XAcGAN) model. It employs state-of-the-art GANs (GANs) to solve the image translation task. The model uses supervised learning and combines attention-based networks to explore spatial information during translation. In addition, we demonstrate the successful application of XAcGAN to infer the health state of translated nuclei from bright-field microscopy images. The results show that our approach achieves excellent performance both in terms of image translation and nuclei state inference.
Super-resolution microscopy allowed major improvements in our capacity to describe and explain biological organization at the nanoscale. Single-molecule localization microscopy (SMLM) uses the positions of molecules to create super-resolved images, but it can also provide new insights into the organization of molecules through appropriate pointillistic analyses that fully exploit the sparse nature of SMLM data. However, the main drawback of SMLM is the lack of analytical tools easily applicable to the diverse types of data that can arise from biological samples. Typically, a cloud of detections may be a cluster of molecules or not depending on the local density of detections, but also on the size of molecules themselves, the labeling technique, the photo-physics of the fluorophore, and the imaging conditions. We aimed to set an easy-to-use clustering analysis protocol adaptable to different types of data. Here, we introduce Diinamic, which combines different density-based analyses and optional thresholding to facilitate the detection of clusters. On simulated or real SMLM data, Diinamic correctly identified clusters of different sizes and densities, being performant even in noisy datasets with multiple detections per fluorophore. It also detected subdomains (“nanodomains”) in clusters with non-homogeneous distribution of detections.
Generators of space-time dynamics in bioimaging have become essential to build ground truth datasets for image processing algorithm evaluation such as biomolecule detectors and trackers, as well as to generate training datasets for deep learning algorithms. In this contribution, we leverage a stochastic model, called birth-death-move (BDM) point process, in order to generate joint dynamics of biomolecules in cells. This particle-based stochastic simulation method is very flexible and can be seen as a generalization of well-established standard particle-based generators. In comparison, our approach allows us: (1) to model a system of particles in motion, possibly in interaction, that can each possibly switch from a motion regime (e.g., Brownian) to another (e.g., a directed motion); (2) to take into account finely the appearance over time of new trajectories and their disappearance, these events possibly depending on the cell regions but also on the current spatial configuration of all existing particles. This flexibility enables to generate more realistic dynamics than standard particle-based simulation procedures, by for example accounting for the colocalization phenomena often observed between intracellular vesicles. We explain how to specify all characteristics of a BDM model, with many practical examples that are relevant for bioimaging applications. As an illustration, based on real fluorescence microscopy datasets, we finally calibrate our model to mimic the joint dynamics of Langerin and Rab11 proteins near the plasma membrane, including the well-known colocalization occurrence between these two types of vesicles. We show that the resulting synthetic sequences exhibit comparable features as those observed in real microscopy image sequences.
Due to the complex architectural diversity of biological networks, there is an increasing need to complement statistical analyses with a qualitative and local description of their spatial properties. One such network is the extracellular matrix (ECM), a biological scaffold for which changes in its spatial organization significantly impact tissue functions in health and disease. Quantifying variations in the fibrillar architecture of major ECM proteins should considerably advance our understanding of the link between tissue structure and function. Inspired by the analysis of functional magnetic resonance imaging (fMRI) images, we propose a novel statistical analysis approach embedded into a machine learning paradigm, to measure and detect local variations of meaningful ECM parameters. We show that parametric maps representing fiber length and pore directionality can be analyzed within the proposed framework to differentiate among various tissue states. The parametric maps are derived from graph-based representations that reflect the network architecture of fibronectin (FN) fibers in a normal, or disease-mimicking in vitro setting. Such tools can potentially lead to a better characterization of dynamic matrix networks within fibrotic tumor microenvironments and contribute to the development of better imaging modalities for monitoring their remodeling and normalization following therapeutic intervention.