Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T18:49:14.072Z Has data issue: false hasContentIssue false

EDTA treatment diminishes the antibacterial and anti-adherence effect of calcium hydroxide on Enterococcus faecalis: an in vitro study

Published online by Cambridge University Press:  10 November 2008

S. George
Affiliation:
Department of Restorative Dentistry, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road, Singapore119074
A. Kishen*
Affiliation:
Department of Restorative Dentistry, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road, Singapore119074
*
*Corresponding author: Dr A. Kishen, Department of Restorative Dentistry, Faculty of Dentistry, National University of Singapore, National University Hospital, 5 Lower Kent Ridge Road, Singapore119074, T65 6516 4624, F65 6774 5701, E[email protected]

Abstract

This study sought to understand the cell surface characteristics, viability and biofilm-forming potential of Enterococcus faecalis cells sequentially exposed to EDTA and calcium hydroxide, as in endodontic treatment. Bacterial cells exposed to EDTA and calcium hydroxide were assayed for cell viability, membrane integrity, cell surface hydrophobicity and surface charge, while alteration in the surface topography of E. faecalis cells was examined using atomic force microscopy (AFM). The bacterial adherence potential to type I collagen was also examined to assess the biofilm-forming capacity of E. faecalis cells exposed to EDTA and calcium hydroxide. It was found that calcium hydroxide treatment reduced the viability of E. faecalis. However, prior exposure to EDTA significantly reduced the antibacterial effect of calcium hydroxide (P < 0.05). Calcium hydroxide treatment resulted in impaired cell wall morphology, observed as increased surface roughness and pore formation under AFM. However, these topographical changes induced by calcium hydroxide were significantly reduced in EDTA pretreated cells (P < 0.05). Calcium hydroxide treatment caused reduction in hydrophobicity and adherence of E. faecalis to type I collagen. These effects due to calcium hydroxide were also significantly altered in EDTA-pretreated cells (P < 0.001). The findings from this study showed that the antibacterial and anti-adherence effect of calcium hydroxide was diminished by prior exposure of E. faecalis cells to EDTA.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdulla, M., Ng, Y.-L., Gulabivala, K. & Spratt, D. (2002) Antimicrobial efficacy of root canal irrigants and medicaments on different phenotypes of Enterococcus faecalis. International Endodontic Journal 35, 492494CrossRefGoogle Scholar
Ajikumar, P. K., Lakshminarayanan, R. & Valiyaveettil, S. (2004) Controlled deposition of thin films of calcium carbonate on natural and synthetic templates. Crystal Growth and Design 4, 331335CrossRefGoogle Scholar
Amro, N. A., Kotra, L. P., Wadu-Mesthrige, K., Bulychev, A., Mobashery, S. & Liu, G. Y. (2000) High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16, 27892796CrossRefGoogle Scholar
Bos, R., van der Mei, H. C. & Busscher, H. J. (1999) Physico-chemistry of initial microbial adhesive interactions: its mechanisms and methods for study. FEMS Microbiology Reviews 23, 179230CrossRefGoogle ScholarPubMed
Bystrom, A. & Sundqvist, G. (1985) The antibacterial action of sodium hypochlorite and EDTA in 60 cases of endodontic therapy. International Endodontic Journal 18, 3540CrossRefGoogle ScholarPubMed
Chen, X. & Stewart, S. P. (2000) Biofilm removal caused by chemical treatments. Water Research 34, 42294233CrossRefGoogle Scholar
Costerton, J. W., Stewart, P. S. & Greenberg, E. P. (1999) Bacterial biofilms: a common cause of persistent infections. Science 284, 13181322CrossRefGoogle ScholarPubMed
Coyette, J. & Hancock, L. E. (2002) Enterococcal cell wall. In The Enterococci: Pathogenesis, Molecular Biology and Antibiotic Resistance, pp. 177218. Edited by Gilmore, M. S., Clewell, D. B., Courvalin, P. M., Dunny, G. M., Murray, B. E. & Rice, L. B.. Washington, DC: ASM PressGoogle Scholar
Dahlen, G., Samuelsson, W., Molander, A. & Reit, C. (2000) Identification and antimicrobial susceptibility of enterococci isolated from the root canal. Oral Microbiology and Immunology 15, 309312CrossRefGoogle ScholarPubMed
Distel, J. W., Hatton, J. F. & Gillespie, M. J. (2002) Biofilm formation in medicated root canals. Journal of Endodontics 28, 689693CrossRefGoogle ScholarPubMed
Dufrene, Y. F. (2002) Atomic force microscopy, a powerful tool in microbiology. Journal of Bacteriology 184, 52055213CrossRefGoogle ScholarPubMed
Evans, M. D. J., Sundqvist, G. & Figdor, D. (2002) Mechanisms involved in the resistance of Enterococcus faecalis to calcium hydroxide. International Endodontic Journal 35, 221228CrossRefGoogle ScholarPubMed
Gallardo-Moreno, A. M., González-Martín, M. L., Pérez-Giraldo, C., Garduno, E., Bruque, J. M. & Gómez-García, A. C. (2002) Serum as a factor influencing adhesion of Enterococcus faecalis to glass and silicone. Applied and Environmental Microbiology and Immunology 68, 57845787Google ScholarPubMed
Gallardo-Moreno, A. M., González-Martín, M. L., Bruque, J. M., Pérez-Giraldo, C., Sánchez-Silos, R. & Gómez-García, A. C. (2003) Influence of the growth medium, suspending liquid and measurement temperature on the physico-chemical surface properties of two enterococci strains. Journal of Adhesion Science and Technology 17, 18771887CrossRefGoogle Scholar
George, S., Kishen, A. & Song, K. P. (2005) The role of environmental changes on monospecies biofilm formation on root canal wall by Enterococcus faecalis. Journal of Endodontics 31, 867872CrossRefGoogle ScholarPubMed
Haapasalo, H. K., Siren, E. K., Waltimo, T. M. T., Orstavik, D. & Haapasalo, M. P. P. (2000) Inactivation of local root canal medicaments by dentine: an in vitro study. International Endodontic Journal 33, 126131CrossRefGoogle ScholarPubMed
Haapasalo, M., Endal, U., Zandi, H. & Coil, J. M. (2005) Eradication of endodontic infection by instrumentation and irrigation solutions. Endodontic Topics 10, 77102CrossRefGoogle Scholar
Heling, I. & Chandler, N. P. (1998) Antimicrobial effect of irrigant combinations within dentinal tubules. International Endodontic Journal 31, 814CrossRefGoogle ScholarPubMed
Kishen, A., George, S. & Kumar, R. (2006) Enterococcus faecalis mediated biomineralized biofilm formation on root canal dentine in vitro. Journal of Biomedical Materials Research Part A 77A, 406415CrossRefGoogle Scholar
Liu, Y., Yang, S. F., Li, Y., Xu, H., Qin, L. & Tay, J. H. (2004) The influence of cell and substratum surface hydrophobicities on microbial attachment. Journal of Biotechnology 110, 251256CrossRefGoogle ScholarPubMed
Love, R. M. (2001) Enterococcus faecalis – a mechanism for its role in endodontic failure. International Endodontic Journal 34, 399405CrossRefGoogle ScholarPubMed
Love, R. M., McMillan, M. D. & Jenkinson, H. F. (1997) Invasion of dentinal tubules by oral streptococci is associated with collagen recognition mediated by the antigen I/II family of polypeptides. Infection and Immunity 65, 51575164CrossRefGoogle ScholarPubMed
Molander, A., Reit, C., Dahlen, G. & Kvist, T. (1998) Microbiological status of root-filled teeth with apical periodontitis. International Endodontic Journal 31, 17CrossRefGoogle ScholarPubMed
Nair, P. N. R. (1987) Light and electron-microscopic studies of root-canal flora and periapical lesions. Journal of Endodontics 13, 2939CrossRefGoogle Scholar
Nair, P. N. R. (1997) Apical periodontitis: a dynamic encounter between root canal infection and host response. Periodontology 2000 13, 121148CrossRefGoogle ScholarPubMed
Nebe-von Caron, G. & Badley, R. A. (1995) Viability assessment of bacteria in mixed populations using flow cytometry. Journal of Microscopy 179, 5566CrossRefGoogle Scholar
Ohnesorge, F., Heckl, W. M., Häberle, W., Pum, D., Sara, M., Schindler, H., et al. (1992) Scanning force microscopy studies of the S-layers from Bacillus coaguIans E38-66, Bacillus sphaericus CCM2177 and of an antibody binding process. Ultramicroscopy 42–44, 12361242CrossRefGoogle Scholar
Portenier, I., Tuomos, M. T., Waltimo, . & Haapasalo, M. (2003) Enterococcus faecalis – the root canal survivor and ‘star’ in post-treatment disease. Endodontic Topics 6, 135159CrossRefGoogle Scholar
Rose, R. K., Matthews, S. P. & Hall, R. C. (1997) Investigation of calcium-binding sites on the surfaces of selected Gram-positive oral organisms. Archives of Oral Biology 42, 595599CrossRefGoogle ScholarPubMed
Rosenberg, M., Gutnick, D. & Rosenberg, E. (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiology Letters 9, 2933CrossRefGoogle Scholar
Schindler, P. R. G. & Teuber, M. (1975) Action of polymyxin B on bacterial membranes: morphological changes in the cytoplasm and in the outer membrane of Salmonella typhimurium and Escherichia coli B. Antimicrobial Agents and Chemotherapy 8, 95104CrossRefGoogle ScholarPubMed
Siqueira, J. F. & Lopes, H. P. (1999) Mechanisms of antimicrobial activity of calcium hydroxide: a critical review. International Endodontic Journal 32, 361369CrossRefGoogle ScholarPubMed
Spratt, D. A. & Pratten, J. (2003) Biofilms and the oral cavity. Reviews in Environmental Science and Biotechnology 2, 109120CrossRefGoogle Scholar
Sundqvist, G., Figdor, D., Persson, S. & Sjogren, U. (1998) Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics 85, 8693CrossRefGoogle ScholarPubMed
Svensater, G. & Bergenholtz, G. (2004) Biofilms in endodontic infections. Endodontic Topics 9, 2736CrossRefGoogle Scholar
Tronstad, L. & Sunde, P. T. (2003) The evolving new understanding of endodontic infections. Endodontic Topics 6, 5777CrossRefGoogle Scholar
Turakhia, M. H & Characklis, W. (1989) Activity of Pseudomonas aeruginosa in biofilms: effect of calcium. Biotechnology Bioengineering 33, 406414CrossRefGoogle ScholarPubMed