Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T08:19:26.811Z Has data issue: false hasContentIssue false

When blue is a disyllabic word: Perceptual epenthesis in the mental lexicon of second language learners

Published online by Cambridge University Press:  03 April 2019

ISABELLE DARCY*
Affiliation:
Indiana University
TRISHA THOMAS
Affiliation:
Indiana University
*
Address for correspondence: Isabelle Darcy, Dept. of Second Language Studies, Indiana University – Bloomington, Morrison Hall 231, 1165 E. 3rd St., Bloomington, IN 47405, USA[email protected]

Abstract

Word-initial obstruent-liquid clusters, frequent in English (e.g., blue), are prohibited in Korean. Korean learners of English perceptually repair illicit word-initial consonant sequences with an epenthetic vowel [ʊ]. Thus they might perceive blue as b[ʊ]lue, and, at least initially, also represent it lexically as a disyllabic word. We ask whether the sound sequences permitted in one's L1 influence the way L2 words are represented in the mental lexicon. If they do, we predict that in a lexical decision task, Korean learners will accept nonwords containing epenthetic vowels ([bʊˈluː] for blue) as real English words more often than English listeners. These predictions were confirmed: we observed high error rates on test nonwords ([bʊˈluː]) by the Korean participants only, accompanied by few errors on control nonwords ([bɪˈluː]), suggesting that learners’ lexical representations for familiar L2 words can be activated by nonwords that obey their L1 phonotactic grammar.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Funding for this study was provided by the Hutton Honors College via an undergraduate research grant to TT. The authors wish to thank Brandi Emerick, Eamon Anderson, Dr. Tom Busey and Dr. Natsuko Tsujimura for their support. We are indebted to Daniel Whyatt and Levi King for their help with recording the stimuli, as well as to Senyung Lee, Dr. Sun-Young Shin and Young Hwang for providing the loanword status evaluation of the experimental words. We also thank Abdullah Alotaibi for help with the acoustic measurements, and Michael Frisby and JangDong Seo from the Indiana University Statistical Consulting Center for help with the statistical analysis. We further gratefully acknowledge support through an Overseas Travel Grant from the Office of the Vice Provost for International Affairs and a 2016 Provost's Travel Award for Women in Science to ID. This work has further benefitted from excellent discussion and thought-provoking questions by audiences at New Sounds 2016 (Aarhus, Denmark) and at the phonetics and phonology reading group (PhLEGMe) at Indiana University. Finally, we also thank the Second Language Psycholinguistics Lab members, as always, for their feedback on earlier versions of this work.

References

Abrahamsson, N. (1999). Vowel Epenthesis of /sC(C)/ Onsets in Spanish/Swedish Interphonology: A Longitudinal Case Study. Language Learning, 49, 473508Google Scholar
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67, 148. doi:10.18637/jss.v067.i01Google Scholar
Bettoni-Techio, M., Rauber, A. S., & Koerich, R. D. (2007). Perception and production of word-final alveolar stops by Brazilian Portuguese learners of English. In Proceedings of Interspeech 2007, pp. 2293 –2296. https://www.isca-speech.org/archive/interspeech_2007/i07_2293.html (retrieved October 8, 2018).Google Scholar
Boersma, P., & Weenink, D. (2016). Praat: Doing phonetics by computer (Version 6.0.13). Retrieved from http://www.praat.org/ (retrieved February 1, 2016)Google Scholar
Broersma, M., & Cutler, A. (2011). Competition dynamics of second-language listening. Quarterly Journal of Experimental Psychology, 64, 7495.Google Scholar
Bürki, A., & Gaskell, M. G. (2012). Lexical representation of schwa words: Two mackerels, but only one salami. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 617631. doi: 10.1037/a0026167Google Scholar
Cardoso, W., John, P., & French, L. (2008). The variable perception of /s/ + coronal onset clusters in Brazilian Portuguese English. In Watkins, M. A., Rauber, A. & Baptista, B. O. (eds.), Recent research in second language phonetics/ phonology: Perception and production, pp. 203231. Newcastle upon Tyne: Cambridge ScholarsGoogle Scholar
Cardoso, W. (2011). The development of coda perception in second language phonology: A variationist perspective. Second Language Research, 27, 433465. doi:10.1177/0267658311413540Google Scholar
Carlisle, R. S. (1991). The influence of environment on vowel epenthesis in Spanish/English interphonology. Applied Linguistics, 12, 7695. doi: 10.1093/applin/12.1.76Google Scholar
Carlson, M. T., Goldrick, M., Blasingame, M., & Fink, A. (2016). Navigating conflicting phonotactic constraints in bilingual speech perception. Bilingualism: Language and Cognition, 19, 939954. doi:10.1017/S1366728915000334Google Scholar
Cook, S. V., Pandža, N. B., Lancaster, A. K., & Gor, K. (2016). Fuzzy Nonnative Phonolexical Representations Lead to Fuzzy Form-to-Meaning Mappings. Frontiers in Psychology, 7, 1345. doi: 10.3389/fpsyg.2016.01345Google Scholar
Cuetos, F., Hallé, P. A., Domínguez, A., & Segui, J. (2011). Perception of prothetic /e/ in #sC utterances: Gating data. In Lee, W. S. & Zee, E. (eds.), Proceedings of the 17th International Congress of Phonetic Sciences (ICPhS XVII), pp. 540543. Hong Kong: City University of Hong Kong.Google Scholar
Cutler, A. (2005). Lexical stress. In Pisoni, D.B. & Remez, R.E. (eds.), The Handbook of Speech Perception, pp. 264289. Oxford: Blackwell.Google Scholar
Darcy, I., Daidone, D., & Kojima, C. (2013). Asymmetric lexical access and fuzzy lexical representations in second language learners. The Mental Lexicon, 8, 372420.Google Scholar
Darcy, I., Dekydtspotter, L., Sprouse, R. A., Glover, J., Kaden, C., McGuire, M., & Scott, J. H. G. (2012). Direct mapping of acoustics to phonology: On the lexical encoding of front rounded vowels in L1 English-L2 French acquisition. Second Language Research, 28, 540. doi: 10.1177/0267658311423455Google Scholar
Davidson, L. (2006a). Phonology, phonetics, or frequency: Influences on the production of non-native sequences. Journal of Phonetics, 34, 104137. doi:https://doi.org/10.1016/j.wocn.2005.03.004Google Scholar
Davidson, L. (2006b). Phonotactics and articulatory coordination interact in phonology: evidence from nonnative production. Cognitive Science, 30, 837862. doi: 10.1207/s15516709cog0000_73Google Scholar
Davidson, L., Shaw, J., & Adams, T. (2007). The effect of word learning on the perception of non-native consonant sequences. The Journal of the Acoustical Society of America, 122, 36973709.Google Scholar
Dehaene-Lambertz, G., Dupoux, E., & Gout, A. (2000). Electrophysiological correlates of phonological processing: A cross-linguistic study. Journal of Cognitive Neuroscience, 12, 635647. doi: doi:10.1162/089892900562390Google Scholar
De Jong, K., & Park, H. (2012). Vowel epenthesis and segment identity in Korean learners of English. Studies in Second Language Acquisition, 34, 127155. doi:10.1017/S0272263111000520Google Scholar
Dupoux, E., Kakehi, K., Hirose, Y., Pallier, C., & Mehler, J. (1999). Epenthetic vowels in Japanese: A perceptual illusion? Journal of Experimental Psychology: Human Perception and Performance, 25, 15681578.Google Scholar
Dupoux, E., Pallier, C., Kakehi, K., & Mehler, J. (2001). New evidence for prelexical phonological processing in word recognition. Language and cognitive processes, 16, 491505.Google Scholar
Dupoux, E., Parlato, E., Frota, S., Hirose, Y., & Peperkamp, S. (2011). Where do illusory vowels come from? Journal of Memory and Language, 64, 199210. doi: https://doi.org/10.1016/j.jml.2010.12.004Google Scholar
Dupoux, E., Sebastián-Gallés, N., Navarrete, E., & Peperkamp, S. (2008). Persistent stress ‘deafness’: The case of French learners of Spanish. Cognition, 106, 682706.Google Scholar
Freeman, M. R., Blumenfeld, H. K., & Marian, V. (2016). Phonotactic constraints are activated across languages in bilinguals. Frontiers in Psychology, 7, 702. http://doi.org/10.3389/fpsyg.2016.00702Google Scholar
Friederici, A. D., & Wessels, J. M. I. (1993). Phonotactic knowledge of word boundaries and its use in infant speech-perception. Perception & Psychophysics, 54, 287295Google Scholar
Gibson, M. (2012). Perception-based vowel insertion by native Spanish-speaking learners of English. TIPA. Travaux interdisciplinaires sur la parole et le langage [Online], 28. http://tipa.revues.org/205 (retrieved September 2, 2013). doi: 10.4000/tipa.205Google Scholar
Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. Psychological Review, 105, 251279. doi:10.1037/0033-295X.105.2.251Google Scholar
Graf Estes, K., Edwards, J., & Saffran, J. R. (2011). Phonotactic constraints on infant word learning. Infancy, 16, 180197. doi: 10.1111/j.1532-7078.2010.00046.xGoogle Scholar
Hallé, P. A., & Best, C. T. (2007). Dental-to-velar perceptual assimilation: A cross-linguistic study of the perception of dental stop+/l/ clusters. The Journal of the Acoustical Society of America, 121, 28992914.Google Scholar
Hallé, P. A., Dominguez, A., Cuetos, F., & Segui, J. (2008). Phonological mediation in visual masked priming: Evidence from phonotactic repair. Journal of Experimental Psychology: Human Perception and Performance, 34, 177192.Google Scholar
Hallé, P. A., Segui, J., Frauenfelder, U. H., & Meunier, C. (1998). Processing of illegal consonant clusters: A case of perceptual assimilation? Journal of Experimental Psychology: Human Perception and Performance, 24, 592608.Google Scholar
John, P., & Cardoso, W. (to appear). Are word-final consonants codas? Evidence from Brazilian Portuguese ESL/EFL learners. In Volin, J. & Skarnitzl, R. (eds.). Pronunciation of English by speakers of other languages. Newcastle upon Tyne: Cambridge Scholars Publishing.Google Scholar
Johnson, K. (1997). Speech perception without speaker normalization: An exemplar model. In Johnson, K. & Mullennix, J. W. (eds.), Talker variability in speech processing (pp. 145165). San Diego, CA: Academic.Google Scholar
Jusczyk, P. W., Friederici, A. D., Wessels, J. M. I., Svenkerud, V. Y., & Jusczyk, A. M. (1993). Infants’ sensitivity to the sound pattern of native language words. Journal of Memory and Language, 32, 402420Google Scholar
Kabak, B. (2003). The perceptual processing of second language consonant clusters. Unpublished Ph.D. Dissertation, University of Delaware, USA.Google Scholar
Kabak, B., & Idsardi, W. J. (2007). Perceptual distortions in the adaptation of English consonant clusters: Syllable structure or consonantal contact constraints? Language & Speech, 50, 2352.Google Scholar
Lahiri, A., & Marslen-Wilson, W. (1991). The mental representation of lexical form: A phonological approach to the recognition lexicon. Cognition, 38, 245294. doi:10.1016/0010-0277(91)90008-RGoogle Scholar
Lahiri, A., & Reetz, H. (2002). Underspecified recognition. In Gussenhoven, C. & Warner, N. (eds.), Laboratory Phonology 7 (pp. 636675). New York, Berlin: Mouton De Gruyter.Google Scholar
Marquez-Martinez, M.-A. (2016). The Acquisition of French Nasal Vowels: From First Language Allophony To Second Language Phonological Contrast. Unpublished Ph.D. Dissertation, Indiana University, USA.Google Scholar
Massaro, D. W., & Cohen, M. M. (1983). Phonological context in speech perception. Perception & Psychophysics, 34, 338348.Google Scholar
Matthews, J., & Brown, C. (2004). When intake exceeds input: Language specific perceptual illusions induced by L1 prosodic constraints. International Journal of Bilingualism, 8, 527. doi:10.1177/13670069040080010201Google Scholar
Mattys, S. L., & Jusczyk, P. W. (2001). Phonotactic cues for segmentation of fluent speech by infants. Cognition, 78, 91121. doi: https://doi.org/10.1016/S0010-0277(00)00109-8Google Scholar
McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 186.Google Scholar
McQueen, J. M., Cutler, A., & Norris, D. (2006). Phonological abstraction in the mental lexicon. Cognitive Science, 30, 11131126.Google Scholar
Moreton, E. (2002). Structural constraints in the perception of English stop-sonorant clusters. Cognition, 84, 5571. doi: https://doi.org/10.1016/S0010-0277(02)00014-8Google Scholar
Norris, D. (1994). Shortlist: a connectionist model of continuous speech recognition. Cognition, 52, 189234.Google Scholar
Ota, M., Hartsuiker, R. J., & Haywood, S. L. (2009). The KEY to the ROCK: Near-homophony in nonnative visual word recognition. Cognition, 111, 263269.Google Scholar
Pallier, C., Colomé, A., & Sebastián-Gallés, N. (2001). The influence of native-language phonology on lexical access: Exemplar-based versus abstract lexical entries. Psychological Science, 12, 445449.Google Scholar
Paradis, C., & Prunet, J.-F. (2000). Nasal vowels as two segments: Evidence from borrowings. Language, 76, 324357. doi:10.2307/417659Google Scholar
Paribakht, T. S., & Wesche, M. B. (1993). Reading comprehension and second language development in a comprehension-based ESL program. TESL Canada Journal, 11, 0929. doi: doi.org/10.18806/tesl.v11i1.623.Google Scholar
Parlato-Oliveira, E., Christophe, A., Hirose, Y., & Dupoux, E. (2010). Plasticity of illusory vowel perception in Brazilian-Japanese bilinguals. The Journal of the Acoustical Society of America, 127, 37383748. doi: https://doi.org/10.1121/1.3327792Google Scholar
Peirce, J. W. (2007). PsychoPy – Psychophysics software in Python. Journal of Neuroscience Methods, 162, 813. doi: https://doi.org/10.1016/j.jneumeth.2006.11.017Google Scholar
Pitt, M. A. (1998). Phonological processes and the perception of phonotactically illegal consonant clusters. Perception & Psychophysics, 60, 941951. doi: 10.3758/bf03211930Google Scholar
Polivanov, E. (1931). La perception des sons d'une langue étrangère, Travaux du Cercle Linguistique de Prague, 4, 7996.Google Scholar
Sebastián-Gallés, N., & Bosch, L. (2002). Building phonotactic knowledge in bilinguals: Role of early exposure. Journal of Experimental Psychology: Human Perception and Performance, 28, 974989.Google Scholar
Sebastián-Gallés, N., Rodríguez-Fornells, A., de Diego-Balaguer, R., & Díaz, B. (2006). First- and second-language phonological representations in the mental lexicon. Journal of Cognitive Neuroscience, 18, 12771291. doi:10.1162/jocn.2006.18.8.1277Google Scholar
Shin, D.-J. (2014). Training Korean speakers on English vowels and prosody: Individual differences in perception, production and vowel epenthesis. Unpublished Ph.D. Dissertation, University College London, UK.Google Scholar
Sternberg, S. (1998). Inferring mental operations from reaction time data: how we compare objects. In Scarborough, D. & Sternberg, S. (eds.). Methods, models and conceptual issues. An invitation to cognitive science, Vol 4. (pp. 365454). Cambridge, MA: MIT PressGoogle Scholar
Weber, A., & Cutler, A. (2006). First-language phonotactics in second-language listening. The Journal of the Acoustical Society of America, 119, 597607.Google Scholar
Wesche, M. B., & Paribakht, T. S. (1996). Assessing second language vocabulary knowledge: depth versus breadth. Canadian Modern Language Review, 53, 1340.Google Scholar