Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T13:42:49.091Z Has data issue: false hasContentIssue false

Perception of American English vowels by sequential Spanish–English bilinguals*

Published online by Cambridge University Press:  13 September 2016

PAULA B. GARCÍA*
Affiliation:
Boys Town National Research Hospital
KAREN FROUD
Affiliation:
Department of Biobehavioral Sciences. Teachers College - Columbia University.
*
Address for correspondence: Paula García, Boys Town National Research Hospital, 555 North, 30th Street, Omaha, NE 68131[email protected]

Abstract

Research on American-English (AE) vowel perception by Spanish–English bilinguals has focused on the vowels /i/-/ɪ/ (e.g., in sheep/ship). Other AE vowel contrasts may present perceptual challenges for this population, especially those requiring both spectral and durational discrimination. We used Event-Related Potentials (ERPs), MMN (Mismatch Negativity) and P300, to index discrimination of AE vowels /ɑ/-/ʌ/ by sequential adult Spanish–English bilingual listeners compared to AE monolinguals. Listening tasks were non-attended and attended, and vowels were presented with natural and neutralized durations. Regardless of vowel duration, bilingual listeners showed no MMN to unattended sounds, and P300 responses were elicited to /ɑ/ but not /ʌ/ in the attended condition. Monolingual listeners showed pre-attentive discrimination (MMN) for /ɑ/ only; while both vowels elicited P300 responses when attended. Findings suggest that Spanish–English bilinguals recruit attentional and cognitive resources enabling native-like use of both spectral and durational cues to discriminate between AE vowels /ɑ/ and /ʌ/.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The research reported here was partially funded by a grant to the first author (Vice President's Student Research in Diversity Grant from Teachers College, Columbia University), and by P20 GM109023 (Boys Town National Research Hospital). It formed part of the first author's doctoral dissertation work. The authors thank the following people for assistance during the study: Dayna Moya, Guannan Shen, Lisa Levinson, Heather Green, Felicidad García and Trey Avery in the Neurocognition of Language Lab, Teachers College, Columbia University. We are deeply thankful to Kanae Nishi, Michael Gorga, Rachel Scheperle, Ben Kirby, Erika Levy and Laura Sánchez for their comments and suggestions on the manuscript and on earlier versions of this work.

References

Aaltonen, O., Niemi, P., Nyrke, T., & Tuhkanen, M. (1987). Event related brain potentials and the perception of a phonetic continuum. Biological Psychology, 24, 197207.Google Scholar
Best, C. T. (1995). A direct realistic view of cross-language speech perception. In Strange, W. (ed.), Speech perception and linguistic experience: Issues in cross-language research pp. 171204. Timonium. MD: York Press.Google Scholar
Best, C. T., & Tyler, M. D. (2007). Nonnative and second-language speech perception: Commonalities and complementarities. In Bohn, O.-S. & Munro, M. J. (eds.), Language Experience in Second Language speech learning: In Honor of James Emil Flege, pp.1334. Amsterdam: Benjamin.CrossRefGoogle Scholar
Berry, J., Jaeger, J., Wiedenhoeft, M., Bernal, B., & Johnson, M. (2014). Consonant context effects on vowel sensorimotor adaptation. Paper presented at 15th Annual Conference of the International Speech Communication Association, INTERSPEECH, SingaporeGoogle Scholar
Boersma, P., & Weenink, D. (2013). Praat: doing phonetics by computer [computer program]. Version 5.3.53, retrieved 9 July 2013 from http://www.praat.org/.Google Scholar
Bohn, O.-S. (1995). Cross language speech perception in adults: first language transfer doesn't tell it all. In Strange, W. (ed.), Speech perception and linguistic experience: issues in cross language research, pp. (279304). Timonium, MD: York Press.Google Scholar
Bent, T., Bradlow, A., & Smith, B. (2007). Segmental errors in different word positions and their effects on intelligibility of non-native speech: All's well that begins well. In Bohn, O.- S. & Munro, M. J. (eds.), Language experience in second language speech learning : In honor to James Emil Flege, pp 331347.Google Scholar
Bradlow, A. R. (1995). A comparative acoustic study of English and Spanish vowels. Journal of the Acoustical Society of America, 97, 19161924. doi.org/10.1121/1.412064 Google Scholar
Campbell, T., Winkler, I., & Kujala, T. (2007). N1 and the mismatch negativity are spatiotemporally distinct ERP components: Disruption of immediate memory by auditory distraction can be related to N1. Psychophysiology, 44, 530540. doi: 10.1111/j.1469-8986.2007.00529.x Google Scholar
Cebrian, J. (2006). Experience and the use of non-native duration in L2 vowel categorization. Journal of Phonetics, 34 (3), 372387. doi:10.1016/j.wocn.2005.08.003 Google Scholar
Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Clopper, C. G., Pisoni, D. B., & De Jong, K. (2005). Acoustic characteristics of the vowel systems of six regional varieties of American English. Journal of the Acoustical Society of America. 118, 16611676. http://dx.doi.org/10.1121/1.2000774 Google Scholar
Cowan, N., & Morse, P. (1986). The use of auditory and phonetic memory in vowel discrimination. The Journal of the Acoustical Society of America, 79, 500507.Google Scholar
Cutler, A., Sebastián-Gallés, N., Soler-Vilageliu, O., & Van Ooijen, B. (2000). Constrains of vowel and consonants on lexical selection: Cross-linguistic comparisons. Memory & Cognition, 28, 746755.Google Scholar
Csépe, V. (1995) On the origin and development of the mismatch negativity. Ear and Hearing, 16, 91104.Google Scholar
Deouell, L.Y., Karns, C. M., Harrison, T. B., & Knight, R. T. (2003). Spatial asymmetries of auditory event-synthesis in humans. Neuroscience Letters, 335, 171174.Google Scholar
Dien, J., Spencer, K. M., & Donchin, E. (2003). Localization of the event-related potential novelty response as defined by principal components analysis. Cognitive Brain Research, 17, 637650.CrossRefGoogle ScholarPubMed
Donchin, E., & Coles, M.G.H. (1988). Is the P300 component a manifestation of cognitive updating? Behavioral Brain Science, 11, 357427.Google Scholar
Escudero, P. (2005). Linguistic perception and second language acquisition. Explaining the attainment of optimal phonological categorization. LOT Dissertation Series, 113, Utrecht University.Google Scholar
Escudero, P., & Boersma, P. (2004). Bridging the gap between L2 speech perception research and phonological theory. Studies in Second Language Acquisition, 26. doi:10.1017/S0272263104040021 Google Scholar
Escudero, P., & Chládková, K. (2010). Spanish listeners’ perception of American and Southern British English vowels. The Journal of the Acoustical Society of America, 128, 254259. doi:10.1121/1.3488794 Google Scholar
Ferree, T. C., Luu, P., Russell, G. S., & Tucker, D. M. (2001). Scalp electrode impedance, infection risk, and EEG data quality, Clinical Neurophysiology, 112, 536544.Google Scholar
Flege, J. (1991). The interlingual identification of Spanish and English vowels: Orthographic evidence. Quarterly Journal of Experimental Psychology, 43, 701731.Google Scholar
Flege, J. (1995). Second language speech learning theory findings and problems. In Strange, W. (ed.), Speech perception and linguistic experience: Issues in cross-language research pp. 233277. Timonium, MD: York Press.Google Scholar
Flege, J., Bohn, O., & Jang, S. (1997). Effects of experience on non-native speakers' production and perception of English vowels. Journal of Phonetics, 25, 437470.CrossRefGoogle Scholar
Flege, J. E., & Munro, M. J. (1994). Auditory and categorical effects on cross-language vowel perception. The Journal of the Acoustical Society of America, 95, 36233641.CrossRefGoogle ScholarPubMed
Fogerty, D., & Kewley-Port, D. (2009). Perceptual contributions of the consonant-vowel boundary to sentence intelligibility. The Journal of the Acoustical Society of America, 126, 847–57. doi:10.1121/1.3159302.Google Scholar
Fox, R., Flege, J. E., & Munro, M. J. (1995). The perception of English and Spanish vowels by native English and Spanish listeners: a multidimensional scaling analysis. The Journal of the Acoustical Society of America, 97, 25402551.Google Scholar
Fox, R., & Jacewicz, E. (2009). Cross-dialectal variation in formant dynamics of American English vowels. Journal of the Acoustical Society of America, 126, 26032618. doi:10.1121/1.3212921.Google Scholar
Gordon, P. C., Eberhardt, J. L., & Rueckl, J. G. (1993). Attentional modulation of the phonetic significance of acoustic cues. Cognitive Psychology, 25, 142. doi: 10.1006/cogp.1993.1001.Google Scholar
Grimm, S., Snik, A., & Van Der Broek, P. (2004). Differential processing of duration changes within short and long sounds in humans. Neuroscience Letters, 356, 8386.Google Scholar
Hammond, R. M. (2001). The Sounds of Spanish: Analysis and Application (With Special Reference to American English). Cascadilla, Somerville, MA.Google Scholar
Harris, J. (1969). Spanish phonology. Cambridge, Mass: MIT Press.Google Scholar
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature, 8, 393402.Google Scholar
Hisagi, M., Shafer, V., Strange, W., & Sussman, E. (2010). Perception of a Japanese Vowel Length Contrast by Japanese and American English Listeners: Behavioral and Electrophysiological measures. Brain Research, 1360, 89105. doi:10.1016/j.brainres.2010.08.092 Google Scholar
Iverson, P., Kuhl, P. K., Akahane-yamada, R., & Diesch, E. (2003). A perceptual interference account of acquisition difficulties for non-native phonemes. Cognition, 87, 4757. doi:10.1016/S0 Google Scholar
Johnson, K., Flemming, E., & Wright, R. (1993). The hyperspace effect: Phonetic targets are hyperarticulated. Language, 3, 505528.Google Scholar
Karypidis, C. (2007). Order effects and vowel decay in short-term memory: The neutralization hypothesis. In Proceedings of the 16th international congress of phonetic sciences, pp. 657–660.Google Scholar
Kewley-Port, D., Burkle, T. Z., & Lee, J. H. (2007). Contribution of consonant versus vowel information to sentence intelligibility for young normal-hearing and elderly hearing-impaired listeners. The Journal of the Acoustical Society of America, 122, 2365–75.CrossRefGoogle ScholarPubMed
Kirmse, U., Ylinen, S., Tervaniemi, M., Vainio, M., Schröger, E., & Jacobsen, T. (2008). Modulation of the mismatch negativity (MMN) to vowel duration changes in native speakers of Finnish and German as a result of language experience. International Journal of Psychophysiology, 67, 131143.Google Scholar
Kondaurova, M. V., & Francis, A. L. (2008). The relationship between native allophonic experience with vowel duration and perception of the English tense/lax vowel contrast by Spanish and Russian listeners. The Journal of the Acoustical Society of America, 124, 39593971. doi:10.1121/1.2999341 Google Scholar
Lipski, S. C., Escudero, P., & Benders, T. (2012). Language experience modulates weighting of acoustic cues for vowel perception: An event-related potential study. Psychophysiology, 49, 638650. doi:10.1111/j.1469-8986.2011.01347.x CrossRefGoogle ScholarPubMed
Lipski, S. C., & Mathiak, K. (2008). Auditory mismatch negativity for speech sound contrasts is modulated by language context. NeuroReport, 19, 1079–83. doi: 10.1097/WNR.0b013e3283056378 Google Scholar
Marian, V., Bartolotti, J., Chabal, S., & Shook, A. (2012). CLEARPOND: Cross-Linguistic Easy-Access Resource for Phonological and Orthographic Neighborhood Densities. PLoS ONE 7 (8): e43230. doi:10.1371/journal.pone.004323 Google Scholar
Minagawa-Kawai, Y., Mori, K., Sato, Y., Koizumi, T. (2004). Differential cortical responses in second language learners to different vowel contrasts. NeuroReport, 15, 899903.Google Scholar
Morrison, G. S. (2006). Methodological issues in L2 perception research, and vowel spectral cues in Spanish listeners’ perception of word-final /t/ and /d/ in Spanish. In Diaz-Campos, M. (eds.), Selected Proceedings of the 2nd Conference on Laboratory Approaches to Spanish Phonetics and Phonology pp. 3547. Somerville, MA: Cascadilla Google Scholar
Morrison, G. S. (2008). L1-Spanish Speakers’ Acquisition of the English /i /-/I/ Contrast: Duration-based perception is not the initial developmental stage. Language and Speech, 51, 285315. doi:10.1177/0023830908099067 Google Scholar
Morrison, G. S. (2009). L1-Spanish speakers’ acquisition of the English /i/-/I/ Contrast II: Perception of vowel inherent spectral change. Language and Speech, 52, 437462. doi:10.1177/0023830909336583 Google Scholar
Munro, M. J., & Derwing, T. M. (2008). Segmental acquisition in adult ESL learners: A longitudinal study of vowel perception. Language Learning, 58, 479502.Google Scholar
Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive functions. The Behavioral and Brain Sciences, 13, 201288.Google Scholar
Näätänen, R. (1995). The mismatch negativity: A powerful tool for cognitive neuroscience. Ear & Hearing, 16 (1), 618.CrossRefGoogle ScholarPubMed
Näätänen, R. (2001). The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm). Psychophysiology, 38, 121.Google Scholar
Näätänen, R., & Alho, K. (1997). Mismatch negativity – The measure for central sound representation accuracy. Audiology and Neuro-Otology, 2, 341353.CrossRefGoogle ScholarPubMed
Näätänen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A., Vainio, M., Alku, P., Ilmoniemi, R., Luuk, A., Allik, J., Sinkkonen, J., & Alho, K. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385: 432–4.Google Scholar
Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 118 (12), 2544–90. doi:10.1016/j.clinph.2007.04.026 Google Scholar
Nenonen, S., Shestakova, A., Huotilainen, M., Näätänen, R. (2005). Speech-sound duration processing in a second language is specific to phonetic categories. Brain and Language, 92:2632.CrossRefGoogle Scholar
Nespor, M., Peña, M., & Mehler, J. (2003). On the different roles of vowels and consonants in speech processing and language acquisition. Lingue e Linguaggio, 2: 221247.Google Scholar
Nishi, K., Strange, W., Akahane-Yamada, R., Kubi, R., & Trent-Brown, S. A. (2008). Acoustic and perceptual similarity of Japanese and American English vowels. Journal of the Acoustical Society of America, 124, 576588.Google Scholar
Ong, J. H., Burnham, D., & Escudero, P. (2015). Distributional Learning of Lexical Tones: A Comparison of Attended vs. Unattended Listening. PLoS ONE 10 (7): e0133446. doi:10.1371/journal.pone.0133446.Google Scholar
Peltola, M., Kujala, T., Tuomainen, J., Ek, M., Aaltonen, O., & Näätänen, R. (2003). Native and foreign vowel discrimination as indexed by the mismatch negativity (MMN) response. Neuroscience Letters, 352, 2528. 10.1016/j.neulet.2003.08.013 Google Scholar
Peltola, M., Tamminen, H., Toivonen, H., Kujala, T., & Näätänen, R. (2012). Different kinds of bilinguals – Different kinds of brains: The neural organization of two languages in one brain. Brain and Language, 121, 261–166.Google Scholar
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, 118 (10), 2128–48. doi:10.1016/j.clinph.2007.04.019 Google Scholar
Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: an integrative review. Biological Psychology, 41, 103146.CrossRefGoogle ScholarPubMed
Polka, L. (1991). Cross-language speech perception in adults: Phonemic, phonetic, and acoustic contributions. The Journal of the Acoustical Society of America, 89, 29612977.Google Scholar
Polka, L., & Bohn, O.-S. (1996). A cross-language comparison of vowel perception in English-learning and German-learning infants. The Journal of the Acoustical Society of America, 100, 577592.Google Scholar
Polka, L., & Bohn, O.-S. (2003). Asymmetries in vowel perception. Speech Communication, 41, 221231. doi:10.1016/S0167-6393(02)00105-X Google Scholar
Polka, L., & Bohn, O.-S. (2010). Natural Referent Vowel (NRV) framework: An emerging view of early phonetic development. Journal of Phonetics, 39, 467478. doi:10.1016/j.wocn.2010.08.007 Google Scholar
Pulvermüller, F., & Shtyrov, Y. (2006). Language outside the focus of attention: the mismatch negativity as a tool for studying higher cognitive processes. Progress in neurobiology, 79, 4971. doi:10.1016/j.pneurobio.2006.04.004 CrossRefGoogle ScholarPubMed
Repp, B. H., & Crowder, R. G. (1990). Stimulus order effects in vowel discrimination. Journal of the Acoustical Society of America, 88, 20802090.Google Scholar
Rivera-Gaxiola, M., Csibra, G., Johnson, M. H., & Karmiloff-Smith, A. (2000). Electrophysiological correlates of cross-linguistic speech perception in native English speakers. Behavioural and Brain Research Journal, 111, 1323.Google Scholar
Schwartz, J.L., Abry, C., Boë, L.J., Ménard, L., & Vallée, N. (2005). Asymmetries in vowel perception, in the context of the Dispersion–Focalisation Theory. Speech Communication, 45, 425434. doi:10.1016/j.specom.2004.12.001 Google Scholar
Sebastián-Gallés, N., Echeverría, S., & Bosch, L. (2005). The influence of initial exposure on lexical representation: Comparing early and simultaneous bilinguals. Journal of Memory and Language, 52, 240255.Google Scholar
Sharma, A., & Dorman, M.F. (2000). Neurophysiologic correlates of cross-language phonetic perception. Journal of the Acoustical Society of America, 107, 26972703.Google Scholar
Sharma, A., Kraus, N., McGee, T.J., & Nicol, T.G. (1997). Developmental changes in P1 and N1 central auditory responses elicited by consonant-vowel syllables. Electroencephalography and Clinicial Neurophysiology. 104, 540545.Google Scholar
Shafer, V. L., Schwartz, R. G., & Kurtzberg, D. (2004). Language-specific memory traces of consonants in the brain. Cognitive Brain Research, 18, 242254.Google Scholar
Spencer, K., & Polich, J. (1999). Post-stimulus EEG spectral analysis and P300: attention, task, and probability. Psychophysiology, 36, 220–32.Google Scholar
Strange, W., Weber, A., Levy, E. S., Shafiro, V., Hisagi, M., and Nishi, K. (2007). Acoustic variability within and across German, French, and American English vowels: Phonetic context effects, Journal of the Acoustical Society of America, 122, 11111129. http://dx.doi.org/10.1121/1.2749716.Google Scholar
Studebaker, G. (1985). A “rationalized” arcsine transform. Journal of Speech and Hearing Research, 28, 455462.Google Scholar
Sussman, E., Kujala, T., Halmetoja, J., Lyytinen, H., Alku, P., & Näätänen, R. (2004). Automatic and controlled processing of acoustic and phonetic contrasts. Hearing Research, 190, 128–40. doi:10.1016/S0378-5955(04)00016-4 Google Scholar
Sussman, E., Winkler, I., Kreuzer, J., Saher, M., Näätänen, R., & Ritter, W. (2002). Temporal integration: Intentional sound discrimination does not modify stimulus-driven processes in auditory event synthesis. Clinical Neurophysiology, 113, 909920.Google Scholar
Tamminen, H., Peltola, M., Toivonen, H., Kujala, T., & Näätänen, R. (2013). Phonological processing differences in bilinguals and monolinguals. International Journal of Psychophysiology, 87, 812. doi:10.1016/j.ijpsycho.2012.10.003 CrossRefGoogle ScholarPubMed
Tervaniemi, M., Jacobsen, T., Rottger, S., Kujala, T., Widmann, A., & Vainio, M. (2006). Selective tuning of cortical sound-feature processing by language experience. European Journal of Neuroscience, 23. 25382541.Google Scholar
Toscano, J. C., McMurray, B., Dennhardt, J., & Luck, S. J. (2010). Continuous perception and graded categorization: electrophysiological evidence for a linear relationship between the acoustic signal and perceptual encoding of speech. Psychological science, 21, 15321540. doi:10.1177/0956797610384142 Google Scholar
Tremblay, K., Kraus, N., Carell, T., & McGee, T. (1997). Central auditory system plasticity: Generalization to novel stimuli following listening training. Journal of the Acoustical Society of America, 102, 37623773 Google Scholar
Tremblay, K., Kraus, N., McGee, T., Ponton, C., & Otis, B. (2001). Central auditory plasticity: changes in the N1-P2 complex after speech-sound training. Ear and Hearing, 22, 7990.Google Scholar
van Leussen, J.-W., & Escudero, P. (2015). Learning to perceive and recognize a second language: the L2LP model revised. Frontiers in Psychology, 6, 1000.Google Scholar
Van Ooijen, B. (1996). Vowel mutability and lexical selection in English: Evidence from a word reconstruction task. Memory & Cognition, 24, 573583.CrossRefGoogle ScholarPubMed
Werker, J. F., & Logan, J. S. (1985). Cross-language evidence for three factors in speech perception. Attention, Perception, & Psychophysics, 37, 3544.CrossRefGoogle ScholarPubMed
Winkler, I., Kujala, T., Tiitinen, H., Sivonen, P., Alku, P., Lehtokoski, A., Czigler, I., Csépe, V., Ilmoniemi, R., & Näätänen, R. (1999). Brain responses reveal the learning of foreign language phonemes. Psychophysiology, 36, 638–42.Google Scholar
Ylinen, S., Huotilainen, M., & Näätänen, R. (2005). Phoneme quality and quantity are processed independently in the human brain. NeuroReport, 16, 18571860.Google Scholar
Ylinen, S., Shestakova, A., Huotilainen, M., Alku, P., & Näätänen, R. (2006). Mismatch negativity (MMN) elicited by changes in phoneme length: a cross-linguistic study. Brain research, 1072, 175185. doi:10.1016/j.brainres.2005.12.004 Google Scholar
Ylinen, S., Uther, M., Latvala, A., Vepsäläinen, S., Iverson, P., Akahane-Yamada, R., & Näätänen, R. (2010). Training the brain to weight speech cues differently: A study of Finnish second-language users of English. Journal of Cognitive Neuroscience, 22, 13191332. doi:10.1162/jocn.2009.21272 Google Scholar