Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-08T00:06:37.681Z Has data issue: false hasContentIssue false

Neural correlates of cross-alphabetic interference and integration in the biliterate brain

Published online by Cambridge University Press:  24 November 2023

Beatriz Bermúdez-Margaretto*
Affiliation:
Departamento de Psicología Básica, Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Salamanca, Salamanca, Spain Instituto de Integración en la Comunidad - INICO, Universidad de Salamanca, Salamanca, Spain
Andriy Myachykov
Affiliation:
Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
Yang Fu
Affiliation:
School of International Studies, Zhejiang University, Hangzhou 310058, China
Grigory Kopytin
Affiliation:
Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation
Yury Shtyrov
Affiliation:
Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
*
Corresponding author Beatriz Bermúdez-Margaretto Email: [email protected]

Abstract

We investigated the neurophysiological mechanisms underlying bi-alphabetic reading using event-related potentials (ERPs). Brain activity was recorded using EEG in a group of Russian–English biliterates during a reading-aloud task with familiar and novel words. Capitalizing on a partial overlap between the Roman and Cyrillic alphabets, the stimuli were presented in L1 Cyrillic, L2 Roman, or in an ambiguous script, in a counterbalanced fashion. The results revealed functional dissociation between the stimuli in terms of processing their graphemic ambiguity. The interference caused by L1-L2 script inconsistencies in novel wordforms was detected at a late processing stage, reflected in N400 response enhancement for unfamiliar script-ambiguous items. Conversely, familiar ambiguous and L2 words showed no N400 increase but demonstrated an early enhancement of the P200 component in comparison to those presented in L1. These results indicate the use of a whole-word reading strategy for familiar words even in ambiguous script, likely triggered by an automatic activation of well-established lexico-semantic representations. The absence of similar top-down mechanisms for novel ambiguous-script words likely results in increased grapheme-to-phoneme decoding effort, with important implications for L2 reading and vocabulary acquisition.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This article has earned badges for transparent research practices: Open Data and Open Materials. For details see the Data Availability Statement.

References

Abu-Rabia, S., & Sanitsky, E. (2010). Advantages of bilinguals over monolinguals in learning a third language. Bilingual Research Journal, 33(2), 173199.CrossRefGoogle Scholar
Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of neurolinguistics, 20(3), 242275.CrossRefGoogle Scholar
Ando, E., Jared, D., Nakayama, M., & Hino, Y. (2014). Cross-script phonological priming with Japanese Kanji primes and English targets. Journal of Cognitive Psychology, 26(8), 853870.CrossRefGoogle Scholar
Antoniou, M., Liang, E., Ettlinger, M., & Wong, P. C. (2015). The bilingual advantage in phonetic learning. Bilingualism: Language and Cognition, 18(4), 683695.CrossRefGoogle Scholar
Assadollahi, R., & Pulvermüller, F. (2003). Early influences of word length and frequency: a group study using MEG. Neuroreport, 14(8), 11831187.CrossRefGoogle Scholar
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390412.CrossRefGoogle Scholar
Barnea, A., & Breznitz, Z. (1998). Phonological and orthographic processing of Hebrew words: electrophysiological aspects. The Journal of genetic psychology, 159(4), 492504.CrossRefGoogle ScholarPubMed
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.Google Scholar
Batterink, L., & Neville, H. (2011). Implicit and explicit mechanisms of word learning in a narrative context: An event-related potential study. Journal of cognitive neuroscience, 23(11), 31813196.CrossRefGoogle Scholar
Bentin, S., Allison, T., Puce, A., Perez, E., & McCarthy, G. (1996). Electrophysiological studies of face perception in humans. Journal of cognitive neuroscience, 8(6), 551565.CrossRefGoogle ScholarPubMed
Bermúdez-Margaretto, B., Shtyrov, Y., Beltrán, D., Cuetos, F., & Domínguez, A. (2020). Rapid acquisition of novel written word-forms: ERP evidence. Behavioral and Brain Functions, 16(1), 117.CrossRefGoogle ScholarPubMed
Bermúdez-Margaretto, B., Gallo, F., Novitskiy, N., Myachykov, A., Petrova, A., & Shtyrov, Y. (2022a). Ultra- rapid and automatic interplay between L1 and L2 semantics in late bilinguals: EEG evidence. Cortex, 151, 147161.CrossRefGoogle ScholarPubMed
Bermúdez-Margaretto, B., Kopytin, G., Myachykov, A., Fu, Y., Pokhoday, M., & Shtyrov, Y. (2022b). Biliteracy and acquisition of novel written words: the impact of phonological conflict between L1 and L2 scripts. Psychological Research, 86(3), 871890.CrossRefGoogle ScholarPubMed
Bialystok, E. (1999). Cognitive complexity and attentional control in the bilingual mind. Child development, 70(3), 636644.CrossRefGoogle Scholar
Bialystok, E. (2017). The bilingual adaptation: How minds accommodate experience. Psychological bulletin, 143(3), 233.CrossRefGoogle ScholarPubMed
Blumenfeld, H. K., & Marian, V. (2013). Parallel language activation and cognitive control during spoken word recognition in bilinguals. Journal of Cognitive Psychology, 25(5), 547567.CrossRefGoogle ScholarPubMed
Boersma, P. (2006). Praat: doing phonetics by computer. http://www.praat.org/.Google Scholar
Borovsky, A., Elman, J. L., & Kutas, M. (2012). Once is enough: N400 indexes semantic integration of novel word meanings from a single exposure in context. Language Learning and Development, 8(3), 278302.CrossRefGoogle ScholarPubMed
Brysbaert, M., Van Dyck, G., & Van de Poel, M. (1999). Visual word recognition in bilinguals: evidence from masked phonological priming. Journal of Experimental Psychology: Human Perception and Performance, 25(1), 137.Google ScholarPubMed
Bultena, S., Dijkstra, T., & Van Hell, J. G. (2013). Cognate and word class ambiguity effects in noun and verb processing. Language and Cognitive Processes, 28(9), 13501377.CrossRefGoogle Scholar
Carreiras, M., Vergara, M., & Barber, H. (2005). Early event-related potential effects of syllabic processing during visual word recognition. Journal of Cognitive Neuroscience, 17(11), 18031817.CrossRefGoogle ScholarPubMed
Carreiras, M., Perea, M., Vergara, M., & Pollatsek, A. (2009). The time course of orthography and phonology: ERP correlates of masked priming effects in Spanish. Psychophysiology, 46(5), 11131122.CrossRefGoogle ScholarPubMed
Carreiras, M., Perea, M., Gil-López, C., Mallouh, R. A., & Salillas, E. (2013). Neural correlates of visual versus abstract letter processing in Roman and Arabic scripts. Journal of Cognitive Neuroscience, 25(11), 19751985.CrossRefGoogle ScholarPubMed
Carreiras, M., Armstrong, B. C., Perea, M., & Frost, R. (2014). The what, when, where, and how of visual word recognition. Trends in cognitive sciences, 18(2), 9098.CrossRefGoogle ScholarPubMed
Chauncey, K., Holcomb, P. J., & Grainger, J. (2008). Effects of stimulus font and size on masked repetition priming: An event-related potentials (ERP) investigation. Language and Cognitive Processes, 23(1), 183200.CrossRefGoogle ScholarPubMed
Chung, S. C., Chen, X., & Geva, E. (2019). Deconstructing and reconstructing cross-language transfer in bilingual reading development: An interactive framework. Journal of Neurolinguistics, 50, 149161.CrossRefGoogle Scholar
Cop, U., Dirix, N., Drieghe, D., & Duyck, W. (2017). Presenting GECO: An eyetracking corpus of monolingual and bilingual sentence reading. Behavior research methods, 49(2), 602615.CrossRefGoogle ScholarPubMed
Dijkstra, T., & Van Heuven, W. J. (1998). The BIA model and bilingual word recognition. Localist connectionist approaches to human cognition, 189225.Google Scholar
Dijkstra, T., & Van Heuven, W. J. (2002). Modeling bilingual word recognition: Past, present and future. Bilingualism: Language and Cognition, 5(3), 219224.CrossRefGoogle Scholar
Dunabeitia, J. A., Molinaro, N., Laka, I., Estevez, A., & Carreiras, M. (2009). N250 effects for letter transpositions depend on lexicality: ‘casual'or ‘causal’?. NeuroReport, 20(4), 381387.CrossRefGoogle Scholar
Durlik, J., Szewczyk, J., Muszyński, M., & Wodniecka, Z. (2016). Interference and inhibition in bilingual language comprehension: Evidence from Polish-English interlingual homographs. PloS one, 11(3), e0151430.CrossRefGoogle ScholarPubMed
Duyck, W., Diependaele, K., Drieghe, D., & Brysbaert, M. (2004). The size of the cross-lingual masked phonological priming effect does not depend on second language proficiency. Experimental Psychology, 51(2), 116124.CrossRefGoogle Scholar
Eberhard, D. M., Simons, G. F., & Fennig, C. D. (Eds.). (2022). Ethnologue: Languages of the World. Twenty-fifth edition. Dallas, Texas: SIL International. Online version: http://www.ethnologue.com.Google Scholar
Friedman, N. P. (2016). Research on individual differences in executive functions: Implications for the bilingual advantage hypothesis. Linguistic approaches to bilingualism, 6(5), 535548.CrossRefGoogle ScholarPubMed
Fu, Y., Bermúdez-Margaretto, B., Beltrán, D., Huili, W., & Dominguez, A. (2023). Language proficiency modulates L2 orthographic learning mechanism: Evidence from event-related brain potentials in overt naming. Studies in Second Language Acquisition, 122. https://doi.org/10.1017/S0272263123000426CrossRefGoogle Scholar
Grainger, J., & Holcomb, P. J. (2009). Watching the word go by: On the time-course of component processes in visual word recognition. Language and linguistics compass, 3(1), 128156.CrossRefGoogle Scholar
Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkkonen, L., & Hämäläinen, M. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in neuroscience, 7, 267. https://doi.org/10.3389/fnins.2013.00267CrossRefGoogle ScholarPubMed
Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Language and cognition, 1(2), 6781.CrossRefGoogle Scholar
Gutierrez-Sigut, E., Vergara-Martínez, M., & Perea, M. (2019). Deaf readers benefit from lexical feedback during orthographic processing. Scientific reports, 9(1), 113.CrossRefGoogle ScholarPubMed
Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., & Marslen-Wilson, W. D. (2006). The time course of visual word recognition as revealed by linear regression analysis of ERP data. Neuroimage, 30(4), 13831400.CrossRefGoogle ScholarPubMed
Havelka, J., & Rastle, K. (2005). The assembly of phonology from print is serial and subject to strategic control: evidence from serbian. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(1), 148.Google ScholarPubMed
Holcomb, P. J., & Grainger, J. (2006). On the time course of visual word recognition: An event-related potential investigation using masked repetition priming. Journal of cognitive neuroscience, 18(10), 16311643.CrossRefGoogle ScholarPubMed
Hoshino, N., & Thierry, G. (2012). Do Spanish–English bilinguals have their fingers in two pies–or is it their toes? An electrophysiological investigation of semantic access in bilinguals. Frontiers in psychology, 3, 9.CrossRefGoogle ScholarPubMed
Hoshino, N., Midgley, K. J., Holcomb, P. J., & Grainger, J. (2010). An ERP investigation of masked cross- script translation priming. Brain research, 1344, 159172.CrossRefGoogle ScholarPubMed
Jared, D., & Kroll, J. F. (2001). Do bilinguals activate phonological representations in one or both of their languages when naming words?. Journal of memory and language, 44(1), 231.CrossRefGoogle Scholar
Jared, D., & Szucs, C. (2002). Phonological activation in bilinguals: Evidence from interlingual homograph naming. Bilingualism: Language and Cognition, 5(3), 225239.CrossRefGoogle Scholar
Jouravlev, O., & Jared, D. (2014). Reading Russian–English homographs in sentence contexts: Evidence from ERPs. Bilingualism: Language and Cognition, 17(1), 153168.CrossRefGoogle Scholar
Kahn-Horwitz, J., Kuash, S., Ibrahim, R., & Schwartz, M. (2014). How do previously acquired languages affect acquisition of English as a foreign language: The case of Circassian. Written Language &Literacy, 17(1), 4061.CrossRefGoogle Scholar
Kaushanskaya, M., & Marian, V. (2009). The bilingual advantage in novel word learning. Psychonomic Bulletin & Review, 16(4), 705710.CrossRefGoogle ScholarPubMed
Keage, H. A., Coussens, S., Kohler, M., Thiessen, M., & Churches, O. F. (2014). Investigating letter recognition in the brain by varying typeface: An event-related potential study. Brain and cognition, 88, 8389.CrossRefGoogle ScholarPubMed
Kerkhofs, R., Dijkstra, T., Chwilla, D. J., & De Bruijn, E. R. (2006). Testing a model for bilingual semantic priming with interlingual homographs: RT and N400 effects. Brain research, 1068(1), 170183.CrossRefGoogle Scholar
Kim, J., & Davis, C. (2003). Task effects in masked cross-script translation and phonological priming. Journal of memory and language, 49(4), 484499.CrossRefGoogle Scholar
Kong, L., Zhang, J. X., Kang, C., Du, Y., Zhang, B., & Wang, S. (2010). P200 and phonological processing in Chinese word recognition. Neuroscience Letters, 473(1), 3741.CrossRefGoogle ScholarPubMed
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual review of psychology, 62, 621647.CrossRefGoogle ScholarPubMed
Lallier, M., & Carreiras, M. (2018). Cross-linguistic transfer in bilinguals reading in two alphabetic orthographies: The grain size accommodation hypothesis. Psychonomic Bulletin & Review, 25(1), 386401.CrossRefGoogle ScholarPubMed
Libben, M. R., & Titone, D. A. (2009). Bilingual lexical access in context: evidence from eye movements during reading. Journal of Experimental Psychology: Learning, memory, and cognition, 35(2), 381.Google ScholarPubMed
Lukatela, G. (1999). Effects of frequency and phonological ambiguity on naming Serbo-Croatian words. European Journal of Cognitive Psychology, 11(1), 116.CrossRefGoogle Scholar
Lukatela, G., & Turvey, M. T. (1990). Phonemic similarity effects and prelexical phonology. Memory & Cognition, 18(2), 128152.CrossRefGoogle ScholarPubMed
MacGregor, L. J., Pulvermüller, F., Van Casteren, M., & Shtyrov, Y. (2012). Ultra-rapid access to words in the brain. Nature communications, 3(1), 17.CrossRefGoogle ScholarPubMed
Macizo, P., Bajo, T., & Martín, M. C. (2010). Inhibitory processes in bilingual language comprehension: Evidence from Spanish–English interlexical homographs. Journal of Memory and Language, 63(2), 232244.CrossRefGoogle Scholar
Madec, S., Rey, A., Dufau, S., Klein, M., & Grainger, J. (2012). The time course of visual letter perception. Journal of cognitive neuroscience, 24(7), 16451655. https://doi.org/10.1162/jocn_a_00178CrossRefGoogle ScholarPubMed
Madec, S., Le Goff, K., Anton, J. L., Longcamp, M., Velay, J. L., Nazarian, B., Roth, M., Courrieu, P., Grainger, J., & Rey, A. (2016a). Brain correlates of phonological recoding of visual symbols. NeuroImage, 132, 359372. https://doi.org/10.1016/j.neuroimage.2016.02.010CrossRefGoogle ScholarPubMed
Madec, S., Le Goff, K., Riès, S. K., Legou, T., Rousselet, G., Courrieu, P., Alario, F.-X., Grainger, J., & Rey, A. (2016b). The time course of visual influences in letter recognition. Cognitive, Affective, & Behavioral Neuroscience, 16(3), 406414.CrossRefGoogle ScholarPubMed
Marian, V., Blumenfeld, H. K., & Kaushanskaya, M. (2007). The Language Experience and Proficiency Questionnaire (LEAP-Q): Assessing language profiles in bilinguals and multilinguals. Journal of Speech, Language, and Hearing Research, 50(4), 940967. http://dx.doi.org/10.1044/1092-4388(2007/067)CrossRefGoogle ScholarPubMed
Martín, M. C., Macizo, P., & Bajo, T. (2010). Time course of inhibitory processes in bilingual language processing. British journal of psychology, 101(4), 679693.CrossRefGoogle ScholarPubMed
Midgley, K. J., Holcomb, P. J., & Grainger, J. (2009). Language effects in second language learners and proficient bilinguals investigated with event-related potentials. Journal of neurolinguistics, 22(3), 281300.CrossRefGoogle ScholarPubMed
Modirkhamene, S. (2006). The reading achievement of third language versus second language learners of English in relation to the interdependence hypothesis. International Journal of Multilingualism, 3(4), 280295.CrossRefGoogle Scholar
Nakayama, M., Sears, C. R., Hino, Y., & Lupker, S. J. (2012). Cross-script phonological priming for Japanese-English bilinguals: Evidence for integrated phonological representations. Language and Cognitive Processes, 27(10), 15631583.CrossRefGoogle Scholar
Novitskiy, N., Myachykov, A., & Shtyrov, Y. (2019). Crosslinguistic interplay between semantics and phonology in late bilinguals: neurophysiological evidence. Bilingualism: Language and cognition, 22(2), 209227.CrossRefGoogle Scholar
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97113.CrossRefGoogle ScholarPubMed
Partanen, E. J., Leminen, A., Cook, C., & Shtyrov, Y. (2018). Formation of neocortical memory circuits for unattended written word forms: neuromagnetic evidence. Scientific reports, 8(1), 110.CrossRefGoogle ScholarPubMed
Peeters, D., Dijkstra, T., & Grainger, J. (2013). The representation and processing of identical cognates by late bilinguals: RT and ERP effects. Journal of Memory and Language, 68(4), 315332.CrossRefGoogle Scholar
Perfetti, C. A., Wlotko, E. W., & Hart, L. A. (2005). Word learning and individual differences in word learning reflected in event-related potentials. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(6), 1281.Google ScholarPubMed
Pivneva, I., Mercier, J., & Titone, D. (2014). Executive control modulates cross-language lexical activation during L2 reading: evidence from eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(3), 787.Google ScholarPubMed
Rabe, M. M., Vasishth, S., Hohenstein, S., Kliegl, R., & Schad, D. J. (2020). Hypr: An r package for hypothesis-driven contrast coding. Journal of Open Source Software, 5(48), 2134.CrossRefGoogle Scholar
Rastle, K., Havelka, J., Wydell, T. N., Coltheart, M., & Besner, D. (2009). The cross-script length effect: Further evidence challenging PDP models of reading aloud. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 238.Google ScholarPubMed
R Core Team. (2022). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Reverberi, C., Kuhlen, A. K., Seyed-Allaei, S., Greulich, R. S., Costa, A., Abutalebi, J., & Haynes, J. D. (2018). The neural basis of free language choice in bilingual speakers: Disentangling language choice and language execution. NeuroImage, 177, 108116.CrossRefGoogle ScholarPubMed
Scandola, M., & Tidoni, E. (2021). The development of a standard procedure for the optimal reliability-feasibility trade-off in Multilevel Linear Models analyses in Psychology and Neuroscience.Google Scholar
Schendan, H. E., Ganis, G., & Kutas, M. (1998). Neurophysiological evidence for visual perceptual categorization of words and faces within 150 ms. Psychophysiology, 35(3), 240251.CrossRefGoogle ScholarPubMed
Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User's guide. Reference guide. Getting started guide. Psychology Software Tools, Incorporated.Google Scholar
Schwartz, M., Geva, E., Share, D. L., & Leikin, M. (2007). Learning to read in English as third language: The cross-linguistic transfer of phonological processing skills. Written Language & Literacy, 10(1), 2552.CrossRefGoogle Scholar
Schwartz, M., Kahn-Horwitz, J., & Share, D. L. (2014). Orthographic learning and self-teaching in a bilingual and biliterate context. Journal of experimental child psychology, 117, 4558.CrossRefGoogle Scholar
Share, D. L. (2008a). Orthographic learning, phonological recoding, and self-teaching. In Advances in child development and behavior (Vol. 36, pp. 3182). JAI.CrossRefGoogle ScholarPubMed
Share, D. L. (2008b). On the Anglocentricities of current reading research and practice: the perils of overreliance on an“ outlier” orthography. Psychological bulletin, 134(4), 584.CrossRefGoogle Scholar
Share, D. L., & Stanovich, K. E. (1995). Cognitive processes in early reading development: accommodating activation associated with word recognition in children with reading difficulties. Issues Educ. Contribut. Educ. Psychol, 1, 157.Google Scholar
Shtyrov, Y., & Lenzen, M. (2017). First-pass neocortical processing of spoken language takes only 30 msec: Electrophysiological evidence. Cognitive neuroscience, 8(1), 2438.CrossRefGoogle ScholarPubMed
Shtyrov, Y., & MacGregor, L. J. (2016). Near-instant automatic access to visually presented words in the human neocortex: neuromagnetic evidence. Scientific Reports, 6(1), 26558.CrossRefGoogle ScholarPubMed
Shtyrov, Y., Butorina, A., Nikolaeva, A., & Stroganova, T. (2014). Automatic ultrarapid activation and inhibition of cortical motor systems in spoken word comprehension. Proceedings of the National Academy of Sciences, 111(18), E1918E1923.CrossRefGoogle ScholarPubMed
Shtyrov, Y., Filippova, M., Perikova, E., Kirsanov, A., Shcherbakova, O., & Blagovechtchenski, E. (2022). Explicit encoding vs. fast mapping of novel spoken words: Electrophysiological and behavioural evidence of diverging mechanisms. Neuropsychologia, 172, 108268.Google ScholarPubMed
Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44(1), 8398.CrossRefGoogle ScholarPubMed
Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. Journal of experimental psychology: Human learning and memory, 6(2), 174Google ScholarPubMed
Soliman, A. M. (2014). Bilingual advantages of working memory revisited: A latent variable examination. Learning and Individual Differences, 32, 168177.CrossRefGoogle Scholar
Sulpizio, S., Arcara, G., Lago, S., Marelli, M., & Amenta, S. (2022). Very early and late form-to-meaning computations during visual word recognition as revealed by electrophysiology. Cortex, 157, 167193.CrossRefGoogle ScholarPubMed
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Computational intelligence and neuroscience, 2011.CrossRefGoogle Scholar
Tarkiainen, A., Cornelissen, P. L., & Salmelin, R. (2002). Dynamics of visual feature analysis and object-level processing in face versus letter-string perception. Brain, 125(5), 11251136.CrossRefGoogle ScholarPubMed
van Hell, J. G., & Tanner, D. (2012). Second language proficiency and cross-language lexical activation. Language Learning, 62, 148171.CrossRefGoogle Scholar
Vergara-Martínez, M., Gómez, P., Jiménez, M., & Perea, M. (2015). Lexical enhancement during prime– target integration: ERP evidence from matched-case identity priming. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 492504.CrossRefGoogle ScholarPubMed
Vergara-Martínez, M., Perea, M., & Leone-Fernández, B. (2020). The time course of the lowercase advantage in visual word recognition: An ERP investigation. Neuropsychologia, 146, 107556.CrossRefGoogle ScholarPubMed
Vergara-Martínez, M., Gutierrez-Sigut, E., Perea, M., Gil-López, C., & Carreiras, M. (2021). The time course of processing handwritten words: An ERP investigation. Neuropsychologia, 159, 107924.CrossRefGoogle ScholarPubMed
von Studnitz, R. E., & Green, D. W. (2002). Interlingual homograph interference in German–English bilinguals: Its modulation and locus of control. Bilingualism: Language and Cognition, 5(1), 123.CrossRefGoogle Scholar
Wong, A. C., Gauthier, I., Woroch, B., Debuse, C., & Curran, T. (2005). An early electrophysiological response associated with expertise in letter perception. Cognitive, Affective, & Behavioral Neuroscience, 5(3), 306318.CrossRefGoogle ScholarPubMed
Wu, Y., Mo, D., Tsang, Y. K., & Chen, H. C. (2012). ERPs reveal sub-lexical processing in Chinese character recognition. Neuroscience Letters, 514(2), 164168.CrossRefGoogle ScholarPubMed
Zhou, H., Chen, B., Yang, M., & Dunlap, S. (2010). Language nonselective access to phonological representations: Evidence from Chinese–English bilinguals. Quarterly Journal of Experimental Psychology, 63(10), 20512066.CrossRefGoogle ScholarPubMed
Supplementary material: File

Bermúdez-Margaretto et al. supplementary material
Download undefined(File)
File 1.4 MB