Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-22T13:40:00.579Z Has data issue: false hasContentIssue false

Electrophysiological correlates of categorical perception of lexical tones by English learners of Mandarin Chinese: an ERP study

Published online by Cambridge University Press:  06 April 2018

GUANNAN SHEN*
Affiliation:
Department of Psychology, Temple University
KAREN FROUD
Affiliation:
Department of Biobehavioral Sciences, Teachers College, Columbia University
*
Address for correspondence: Guannan Shen, 1808 North Broad Street, Philadelphia, Pennsylvania, 19122[email protected]

Abstract

This study examines brain responses to boundary effects with respect to Mandarin lexical tone continua for three groups of adult listeners: (1) native English speakers who took advanced Mandarin courses; (2) naïve English speakers; and (3) native Mandarin speakers. A cross-boundary tone pair and a within-category tone pair derived from tonal contrasts (Mandarin Tone 1/Tone 4; Tone 2/Tone 3) with equal physical/acoustical distance were used in an auditory oddball paradigm. For native Mandarin speakers, the cross-category deviant elicited a larger MMN over left hemisphere sensors and larger P300 responses over both hemispheres relative to within-category deviants, suggesting categorical perception of tones at both pre-attentive and attentional stages of processing. In contrast, native English speakers and Mandarin learners did not demonstrate categorical effects. However, learners of Mandarin showed larger P300 responses than the other two groups, suggesting heightened sensitivity to tones and possibly greater attentional resource allocation to tone identification.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attneave, F., & Olson, R. (1971). Pitch as a medium: A new approach to psychophysical scaling. The American Journal of Psychology, 147166.Google Scholar
Bidelman, G. M., & Lee, C. C. (2015). Effects of language experience and stimulus context on the neural organization and categorical perception of speech. NeuroImage, 120, 191200.Google Scholar
Bidelman, G. M., Moreno, S., & Alain, C. (2013). Tracing the emergence of categorical speech perception in the human auditory system. NeuroImage, 79, 201–12.Google Scholar
Boersma, P., & Weenink, D. (2009). Praat: doing phonetics by computer (Version 5.1. 05). Retrieved May 1, 2009.Google Scholar
Broselow, E., Hurtig, R. R., & Ringen, C. (1987). The perception of second language prosody. Interlanguage phonology: The acquisition of a second language sound system, 350361.Google Scholar
Chandrasekaran, B., Krishnan, A., & Gandour, J. T. (2007). Mismatch negativity to pitch contours is influenced by language experience. Brain Research, 1128 (1), 148–56.Google Scholar
Chandrasekaran, B., Krishnan, A., & Gandour, J. T. (2009). Relative influence of musical and linguistic experience on early cortical processing of pitch contours. Brain and Language, 108 (1), 19.Google Scholar
Dehaene-Lambertz, G. (1997). Electrophysiological correlates of categorical phoneme perception in adults. Neuroreport, 8 (4), 919–24.Google Scholar
Dehaene-Lambertz, G., Pallier, C., Serniclaes, W., Sprenger-Charolles, L., Jobert, A., & Dehaene, S. (2005). Neural correlates of switching from auditory to speech perception. NeuroImage, 24 (1), 2133.Google Scholar
Díaz, B., Mitterer, H., Broersma, M., & Sebastián-Gallés, N. (2012). Individual differences in late bilinguals’ L2 phonological processes: From acoustic-phonetic analysis to lexical access. Learning and Individual Differences, 22 (6), 680689.Google Scholar
Eimas, P., Siqueland, E., Juscyk, P., & Vigorito, J. (1971). Speech perception in infants. Science, 171 (3968), 303306.Google Scholar
Francis, A. L., Ciocca, V., & Ng, B. K. C. (2003). On the (non)categorical perception of lexical tones. Perception & Psychophysics, 65 (7), 1029–44.Google Scholar
Gandour, J. (1994). Phonetics of tone. The Encyclopedia of Language & Linguistics, 6, 31163123.Google Scholar
Gandour, J., Tong, Y., Wong, D., Talavage, T., Dzemidzic, M., Xu, Y., Li, X., & Lowe, M. (2004). Hemispheric roles in the perception of speech prosody. NeuroImage, 23 (1), 344–57.Google Scholar
Gandour, J., Wong, D., Hsieh, L., Weinzapfel, B., Van Lancker, D., & Hutchins, G. D. (2000). A crosslinguistic PET study of tone perception. Journal of Cognitive Neuroscience, 12 (1), 207–22.Google Scholar
Hallé, P. a., Chang, Y.-C., & Best, C. T. (2004). Identification and discrimination of Mandarin Chinese tones by Mandarin Chinese vs. French listeners. Journal of Phonetics, 32 (3), 395421.Google Scholar
Harnad, S. (1987). Psychophysical and cognitive aspects of categorical perception: A critical overview. In Categorical perception: The groundwork of cognition (pp. 152). Cambridge University Press.Google Scholar
Hao, Y. C. (2012). Second language acquisition of Mandarin Chinese tones by tonal and non-tonal language speakers. Journal of Phonetics, 40 (2), 269279.Google Scholar
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8 (5), 393402.Google Scholar
Hsiao, F.-J., Wu, Z.-A., Ho, L.-T., & Lin, Y.-Y. (2009). Theta oscillation during auditory change detection: An MEG study. Biological Psychology, 81 (1), 5866.Google Scholar
Hsieh, L., Gandour, J., Wong, D., & Hutchins, G. D. (2001). Functional heterogeneity of inferior frontal gyrus is shaped by linguistic experience. Brain and Language, 76 (3), 227–52.Google Scholar
Jia, S., Tsang, Y.-K., Huang, J., & Chen, H.-C. (2013). Right hemisphere advantage in processing Cantonese level and contour tones: evidence from dichotic listening. Neuroscience Letters, 556, 135–9.Google Scholar
Joanisse, M. F., Zevin, J. D., & McCandliss, B. D. (2007). Brain mechanisms implicated in the preattentive categorization of speech sounds revealed using FMRI and a short-interval habituation trial paradigm. Cerebral Cortex (New York, N.Y.: 1991), 17 (9), 2084–93.Google Scholar
Jongman, A., Wang, Y., Moore, C., & Sereno, J. (2006). Perception and production of Mandarin tone. In Li, P., Tan, L. H., Bates, E., & Tzeng, O. J. L. (Eds.), Handbook of East Asian Psycholinguistics (Vol. 1: Chinese). Cambridge, UK: Cambridge University PressGoogle Scholar
Jongman, A., Qin, Z., Zhang, J., & Sereno, J. A. (2017). Just noticeable differences for pitch direction, height, and slope for Mandarin and English listeners. The Journal of the Acoustical Society of America, 142 (2), EL163–EL169Google Scholar
Kaan, E., Barkley, C. M., Bao, M., & Wayland, R. (2008). Thai lexical tone perception in native speakers of Thai, English and Mandarin Chinese: an event-related potentials training study. BMC Neuroscience, 9, 53.Google Scholar
Kasai, K., Yamada, H., Kamio, S., Nakagome, K., Iwanami, A., Fukuda, M., Itoh, K., Koshida, I., Yumoto, M., Iramina, K., Kato, N., &, Ueno, S. (2001). Brain lateralization for mismatch response to across- and within-category change of vowels. Neuroreport, 12 (11), 24672471.Google Scholar
Kazanina, N., Phillips, C., & Idsardi, W. (2006). The influence of meaning on the perception of speech sounds. Proceedings of the National Academy of Sciences of the United States of America, 103 (30), 11381–6.Google Scholar
Kuhl, P. K. (1997). Cross-language analysis of phonetic units in language addressed to infants. Science, 277 (5326), 684686.Google Scholar
Li, X., Gandour, J. T., Talavage, T., Wong, D., Hoffa, A., Lowe, M., & Dzemidzic, M. (2010). Hemispheric asymmetries in phonological processing of tones versus segmental units. Neuroreport, 21 (10), 690694.Google Scholar
Liebenthal, E., Desai, R., Ellingson, M. M., Ramachandran, B., Desai, A., & Binder, J. R. (2010). Specialization along the left superior temporal sulcus for auditory categorization. Cerebral Cortex, 20 (12), 2958–70.Google Scholar
Luo, H., Ni, J.-T., Li, Z.-H., Li, X.-O., Zhang, D.-R., Zeng, F.-G., & Chen, L. (2006). Opposite patterns of hemisphere dominance for early auditory processing of lexical tones and consonants. Proceedings of the National Academy of Sciences of the United States of America, 103 (51), 19558–63.Google Scholar
Maiste, A. C., Wiens, A. S., Hunt, M. J., Scherg, M., & Picton, T. W. (1995). Event-related potentials and the categorical perception of speech sounds. Ear and Hearing, 16 (1), 6890.Google Scholar
Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distributional information can affect phonetic discrimination. Cognition, 82 (3), B101B111.Google Scholar
Moore, C. B., & Jongman, A. (1997). Speaker normalization in the perception of Mandarin Chinese tones. The Journal of the Acoustical Society of America, 102 (3), 1864.Google Scholar
Moulines, E., & Laroche, J. (1995). Non-parametric techniques for pitch-scale and time-scale modification of speech. Speech Communication, 16 (2), 175205.Google Scholar
Näätänen, R. (2001). The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm). Psychophysiology, 38 (1), 121.Google Scholar
Näätänen, R., & Alho, K. (1997). Mismatch Negativity-The Measure for Central Sound Representation Accuracy. Audiology and Neurotology, 2 (5), 341353.Google Scholar
Näätänen, R., Jacobsen, T., & Winkler, I. (2005). Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 42 (1), 2532.Google Scholar
Peng, G., Zheng, H.-Y., Gong, T., Yang, R.-X., Kong, J.-P., & Wang, W. S.-Y. (2010). The influence of language experience on categorical perception of pitch contours. Journal of Phonetics, 38 (4), 616624.Google Scholar
Pincze, Z., Lakatos, P., Rajkai, C., Ulbert, I., & Karmos, G. (2001). Separation of mismatch negativity and the N1 wave in the auditory cortex of the cat: A topographic study. Clinical Neurophysiology, 112 (5), 778784.Google Scholar
Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 118 (10), 2128–48.Google Scholar
Ren, G.-Q., Yang, Y., & Li, X. (2009). Early cortical processing of linguistic pitch patterns as revealed by the mismatch negativity. Neuroscience, 162 (1), 8795.Google Scholar
Sebastían-Gallés, N., & Baus, C. (2005). On the relationship between perception and production in L2 categories. Twenty-first century psycholinguistics: Four cornerstones, 279292.Google Scholar
Sharma, A., & Dorman, M. F. (1999). Cortical auditory evoked potential correlates of categorical perception of voice-onset time. The Journal of the Acoustical Society of America, 106 (2), 1078.Google Scholar
Shen, G., & Froud, K. (2016). Categorical perception of lexical tones by English learners of Mandarin Chinese. The Journal of the Acoustical Society of America, 140 (6), 43964403.Google Scholar
Shen, X. S., Lin, M., & Yan, J. (1993). F 0 turning point as an F 0 cue to tonal contrast: a case study of Mandarin tones 2 and 3. The Journal of the Acoustical Society of America, 93 (4), 22412243.Google Scholar
Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). A scale for the measurement of the psychological magnitude pitch. The Journal of the Acoustical Society of America, 8 (3), 185190.Google Scholar
Stevens, S. S., & Volkmann, J. (1940). The relation of pitch to frequency: A revised scale. The American Journal of Psychology, 53 (3), 329353.Google Scholar
Toscano, J. C., McMurray, B., Dennhardt, J., & Luck, S. J. (2010). Continuous perception and graded categorization: electrophysiological evidence for a linear relationship between the acoustic signal and perceptual encoding of speech. Psychological Science, 21 (10), 1532–40.Google Scholar
van Lancker, D. (1980). Cerebral lateralization of pitch cues in the linguistic signal. Research on Language & Social Interaction, 13 (2), 201277.Google Scholar
Wang, Y., Jongman, a., & Sereno, J. a. (2001). Dichotic perception of Mandarin tones by Chinese and American listeners. Brain and Language, 78 (3), 332–48.Google Scholar
Wang, Y., & Kuhl, P. K. (2003). Evaluating the “critical period” hypothesis: perceptual learning of Mandarin tones in American adults and American children at 6, 10 and 14 years of age,”. In Poster Presented at the 15th International Congress of Phonetic Sciences (pp. 1537–1540).Google Scholar
White, C. M. (1981). Tonal perception errors and interference from English intonation. Journal of Chinese Language Teachers Association, 16 (2), 2756.Google Scholar
Winkler, I., Lehtokoski, A., Alku, P., Vainio, M., Czigler, I., Csépe, V., Aaltonen, O., Raimo, I., Alho, K., Lang, H., Iivonen, A., & Näätänen, R. (1999). Pre-attentive detection of vowel contrasts utilizes both phonetic and auditory memory representations. Cognitive Brain Research, 7 (3), 357369.Google Scholar
Wong, P. C. M., Parsons, L. M., Martinez, M., & Diehl, R. L. (2004). The role of the insular cortex in pitch pattern perception: the effect of linguistic contexts. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24 (41), 9153–60.Google Scholar
Xi, J., Zhang, L., Shu, H., Zhang, Y., & Li, P. (2010). Categorical perception of lexical tones in Chinese revealed by mismatch negativity. Neuroscience, 170 (1), 223–31.Google Scholar
Xu, Y., Gandour, J. T., & Francis, A. L. (2006). Effects of language experience and stimulus complexity on the categorical perception of pitch direction. The Journal of the Acoustical Society of America, 120 (2), 1063.Google Scholar
Xu, Y., & Xu, C. X. (2005). Phonetic realization of focus in English declarative intonation. Journal of Phonetics, 33 (2), 159197.Google Scholar
Zatorre, R. J., & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral cortex, 11 (10), 946953.Google Scholar
Zhao, T. C., & Kuhl, P. K. (2015). Effect of musical experience on learning lexical tone categories. The Journal of the Acoustical Society of America, 137 (3), 1452–63.Google Scholar
Zheng, H. (2010). Categorical Perception of Lexical tones: Behavioral and Psychophysiological Study. (Unpublished doctoral dissertation). The Chinese University of Hong Kong, Hong Kong.Google Scholar