Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T18:08:25.941Z Has data issue: false hasContentIssue false

Age of acquisition and proficiency in a second language independently influence the perception of non-native speech*

Published online by Cambridge University Press:  07 September 2011

PILAR ARCHILA-SUERTE*
Affiliation:
University of Houston
JASON ZEVIN
Affiliation:
Sackler Institute for Developmental Psychobiology–Weill Medical College of Cornell University
FERENC BUNTA
Affiliation:
University of Houston
ARTURO E. HERNANDEZ
Affiliation:
University of Houston
*
*Address for correspondence: Pilar Archila, Department of Psychology, University of Houston, 126 Heyne Bldg., Houston, Texas 77204-5022, USA[email protected]

Abstract

Sensorimotor processing in children and higher-cognitive processing in adults could determine how non-native phonemes are acquired. This study investigates how age-of-acquisition (AOA) and proficiency-level (PL) predict native-like perception of statistically dissociated L2 categories, i.e., within-category and between-category. In a similarity task, participants rated the level of similarity between pairs of English syllables from 1 (similar) to 4 (dissimilar). Early L2 acquisition predicts accurate within-categorization and high proficiency in late L2 acquisition predicts improved between-categorization. Our results suggest that the manner in which bilinguals learn to categorize non-native sounds depends on the cognitive processes available at the age of L2 exposure.

Type
Research Notes
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

We would like to extend our gratitude to Lee Branum-Martin for his guidance with the analysis and to our research assistant Gabriela Ochoa for her help collecting data for this project. This research was supported by R21HD059103-01 Neural correlates of lexical processing in child L2 learners and by the Institute for Biomedical Imaging Science (IBIS) for Plasticity in Speech Perception in Early Bilingual Children.

References

Aoyama, K., Flege, J. E., Guion, S., Akahane-Yamada, R., & Yamada, T. (2004). Perceived phonetic dissimilarity and L2 speech learning: The case of Japanese /r/ and English /l/ and /r/. Journal of Phonetics, 32, 233250.CrossRefGoogle Scholar
Archila, P., Ramos, A. I., Zevin, J., & Hernandez, A. E. (2010). How age of acquisition and proficiency predicts sound detection in bilinguals. Poster presented at Armadillo Conference, College Station, TX.Google Scholar
Best, C. (1995). A direct realist view of cross language speech perception. In Strange, W. (ed.), Speech perception and linguistic experience: Theoretical and methodological issues in cross-language speech research, pp. 171206. Timonium, MD: York Press.Google Scholar
Best, C. T., & Strange, W. (1992). Effects of phonological and phonetic factors on cross-language perception of approximants. Journal of Phonetics, 20, 305331.CrossRefGoogle Scholar
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., et al. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10 (5), 512528.CrossRefGoogle ScholarPubMed
Birdsong, D. (1999). Introduction: Whys and why nots of the Critical Period Hypothesis for second language acquisition. In Birdsong, D. (ed.), Second language acquisition and the Critical Period Hypothesis, pp. 122. Mahwah, NJ: Lawrence Erlbaum Associates.CrossRefGoogle Scholar
Bolhuis, J. J. (1999). The development of animal behaviour: From Lorenz to neural nets. Naturwissenschaften, 86, 101111.CrossRefGoogle ScholarPubMed
Bronson, G. (1974). The postnatal growth of visual capacity. Child Development, 45 (4), 873890.CrossRefGoogle ScholarPubMed
Bronson, G. (1990). Changes in infants’ visual scanning across the 2−14 week age period. Journal of Experimental Child Psychology, 49, 101125.CrossRefGoogle Scholar
Callan, D. E., Jones, J. A., Callan, A. M., & Akahane-Yamada, R. (2004). Phonetic perceptual identification by native- and second-language speakers differentially activates brain regions involved with acoustic phonetic processing and those involved with articulatory−auditory/orosensory internal models. Neuroimage, 22 (3), 11821194.CrossRefGoogle ScholarPubMed
Clements, W. A., & Perner, J. (1994). Implicit understanding of belief. Cognitive Development, 9, 377395.CrossRefGoogle Scholar
Dehaene-Lambertz, G., Dehaene, S., & Hertz-Pannier, L. (2002). Functional neuroimaging of speech in infants. Science, 298 (5600), 20132015.CrossRefGoogle ScholarPubMed
Flege, J. E. (1991). Perception and production: The relevance of phonetic input to L2 phonological learning. In Hueber, T. & Ferguson, C. (eds.), Crosscurrents in second language acquisition and linguistic theories, pp. 249289. Amsterdam/Philadelphia: John Benjamins.CrossRefGoogle Scholar
Flege, J. E. (1995). Second-language speech learning: Theory, findings and problems. In Strange, W. (ed.), Speech perception and linguistic experience: Theoretical and methodological issues in cross-language speech research, pp. 229273. Timonium, MD; York Press.Google Scholar
Flege, J. E. (2003). Assessing constraints on second-language segmental production and perception. In Schiller, N. & Meyer, A. (eds.), Phonetics and phonology in language comprehension, pp. 319355. Berlin: Walter de Gruyter.CrossRefGoogle Scholar
Flege, J. E., Frieda, E. M., & Nozawa, T. (1997). Amount of native-language (L1) use affects the pronunciation of an L2. Journal of Phonetics, 25, 169186.CrossRefGoogle Scholar
Flege, J. E., Munro, M., & Fox, R. (1994). Auditory and categorical effects on cross-language vowel perception. Journal of the Acoustical Society of America, 95, 36233641.CrossRefGoogle ScholarPubMed
Gao, J. H., Parsons, L. M., Bower, J. M., Xiong, J., Li, J., & Fox, P. T. (1996). Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science, 272, 545547.CrossRefGoogle ScholarPubMed
Golestani, N., & Zatorre, R. J. (2004). Learning new sounds of speech: Reallocation of neural substrates. Neuroimage, 21 (2), 494506.CrossRefGoogle ScholarPubMed
Green, P., & Hecht, K. (1992). Implicit and explicit grammar. An empirical study. Applied Linguistics, 13 (2), 168184.CrossRefGoogle Scholar
Guion, S., Flege, J., Akahane-Yamada, R., & Pruitt, J. (2000). An investigation of current models of second language speech perception: The case of Japanese adults’ perception of English consonants. Journal of the Acoustical Society of America, 107 (5), 27112724.CrossRefGoogle ScholarPubMed
Hernandez, A. E., & Li, P. (2007). Age of acquisition: Its neural and computational mechanisms. Psychological Bulletin, 133 (4), 638650.CrossRefGoogle ScholarPubMed
Hudson-Kam, C. L., & Newport, E. L. (2005). Regularizing unpredictable variation: The roles of adult and child learners in language formation and change. Language Learning and Development, 1, 151195.CrossRefGoogle Scholar
Hugdahl, K., Wester, K., & Asbjørnsen, A. (1991). Auditory neglect after right frontal lobe and right pulvinar thalamic lesions. Brain & Language, 41 (3), 465473.CrossRefGoogle ScholarPubMed
Imada, T., Zhang, Y., Cheour, M., Taulu, S., Ahonen, A., & Kuhl, P. K. (2006). Infant speech perception activates Broca's area: A developmental magnetoencephalography study. NeuroReport, 17 (10), 957962.CrossRefGoogle ScholarPubMed
Joanisse, M. F., Zevin, J. D., & McCandliss, B. D. (2007). Brain mechanisms implicated in the preattentive categorization of speech sounds revealed using fMRI and a short-interval habituation trial paradigm. Cerebral Cortex, 17 (9), 20842093.CrossRefGoogle Scholar
Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews Neuroscience, 2, 475483.CrossRefGoogle ScholarPubMed
Johnson, M. H. (2005). Developmental cognitive neuroscience, 2nd edn. Oxford: Blackwell.Google Scholar
Karmiloff-Smith, A. (1991). Innate constraints and developmental change. In Carey, S. and Gelman, R. (eds.), Epigenesis of the mind: Essays in biology and knowledge, pp. 171197. Mahwah, NJ: Erlbaum.Google Scholar
Kent, R. (1997). The Speech Sciences. San Diego: Singular Publishing Group.Google Scholar
Kuhl, P. K. (2000). A new view of language acquisition. Proceedings of the National Academy of Sciences of the United States of America, 97 (22), 1185011857.CrossRefGoogle ScholarPubMed
Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21, 136.CrossRefGoogle ScholarPubMed
Morton, J., & Johnson, M. H. (1991). CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review, 98, 164181.CrossRefGoogle ScholarPubMed
Pallier, C., Dehaene, S., Poline, J. B., LeBihan, D., Argenti, A. M., Dupoux, E., et al. (2003). Brain imaging of language plasticity in adopted adults: Can a second language replace the first? Cerebral Cortex, 13, 155161.CrossRefGoogle ScholarPubMed
Peltola, M., Kuntola, M., Tamminen, H., Hämäläinen, H., & Aaltonen, O. (2005). Early exposure to non-native language alters preattentive vowel discrimination. Neuroscience Letters, 388 (3), 121125.CrossRefGoogle ScholarPubMed
Pulvermüller, F., Huss, M., Kherif, F., Martin, F., Hauk, O., & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences of the United States of America, 103 (20), 78657870.CrossRefGoogle ScholarPubMed
Reber, A. S., Kassin, S. M., Lewis, S., & Cantor, G. (1980). On the relationship between implicit and explicit modes in the learning of a complex rule structure. Journal of Experimental Psychology: Human Learning and Memory, 6, 492502.Google Scholar
Rueckert, L., & Grafman, J. (1996). Sustained attention deficits in patients with right frontal lesions. Neuropsychologia, 34 (10), 953963.CrossRefGoogle ScholarPubMed
Sabri, M., Binder, J., Desai, R., Medler, D., Leitl, M., & Liebenthal, E. (2007). Attentional and linguistic interactions in speech perception. Neuroimage, 39 (3), 14441456.CrossRefGoogle ScholarPubMed
Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7, 4963.CrossRefGoogle Scholar
Westermann, G., Mareschal, D., Johnson, M., Sirois, S., Spratling, M., & Thomas, M. (2007). Neuroconstructivism. Developmental Science, 10 (1), 7583.CrossRefGoogle ScholarPubMed
Woodcock, R., & Muñoz-Johnson, A. (2005). Woodcock-Munoz Language Survey: Normative Update. Itasca, IL: Riverside Publishing.Google Scholar
Zevin, J. D., & McCandliss, B. D. (2005). Dishabituation of the BOLD response to speech sounds. Behavioral and Brain Functions, 1 (1), 14.CrossRefGoogle ScholarPubMed