Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T13:28:13.192Z Has data issue: false hasContentIssue false

Crosslinguistic interplay between semantics and phonology in late bilinguals: neurophysiological evidence

Published online by Cambridge University Press:  16 May 2018

NIKOLAY NOVITSKIY*
Affiliation:
Center for Cognition and Decision Making, Higher School of Economics, Russia Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
ANDRIY MYACHYKOV
Affiliation:
Center for Cognition and Decision Making, Higher School of Economics, Russia Department of Psychology, Northumbria University, Newcastle-upon-Tyne, UK
YURY SHTYROV
Affiliation:
Center for Cognition and Decision Making, Higher School of Economics, Russia Center of Functionally Integrative Neuroscience, Institute for Clinical Medicine, Aarhus University, Denmark
*
Address for Correspondence: Nikolay Novitskiy, PhD, Department of Linguistics & Modern Languages, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR[email protected]

Abstract

We investigated effects of crosslinguistic phonological and semantic similarity on the bilingual lexicon of late unbalanced bilinguals. Our masked priming paradigm used L1 (Russian) words as masked primes and L2 (English) words as targets. The primes and the targets either overlapped – phonologically, semantically, both phonologically and semantically – or did not overlap. Participants maintained the targets in memory and matched them against occasionally presented catch stimuli. N170 and N400 components of the word-elicited high-density ERPs were identified and analysed in signal and source space. Crosslinguistic semantic similarity shortened the reaction times. The semantics-related N400 amplitude difference correlated with individual L2 proficiency, while phonological similarity suppressed the N400 amplitude in the semantically unrelated condition. ERP source analysis suggests that these ERP dynamics are underpinned by cortical generators in the left IFG and the temporal pole. We conclude that the semantic and phonological interplay between L1 and L2 suggest an integrated bilingual lexicon.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary material can be found online at https://doi.org/10.1017/S1366728918000627

*The study has been supported by the HSE Basic Research Program, Russian Academic Excellence Project ‘5-100’, Russian Foundation for Basic Research project 16-06-00468, NRU Higher School of Economics, Aarhus University and the Lundbeck Foundation (Denmark; project 15480 Neolex). We thank Elena Kulkova for her help with the data collection and Olga Martynova for valuable comments at the project design stage.

References

Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica, 128 (3), 466478. https://doi.org/10.1016/j.actpsy.2008.03.014Google Scholar
Antón, E., Duñabeitia, J. A., Estévez, A., Hernández, J. A., Castillo, A., Fuentes, L. J., Davidson, D. J., & Carreiras, M. (2014). Is there a bilingual advantage in the ANT task? Evidence from children. Frontiers in Psychology, 5 (MAY), 112. https://doi.org/10.3389/fpsyg.2014.00398Google Scholar
Antón, E., Fernández García, Y., Carreiras, M., & Duñabeitia, J. A. (2016). Does bilingualism shape inhibitory control in the elderly? Journal of Memory and Language, 90, 147160. https://doi.org/10.1016/j.jml.2016.04.007Google Scholar
Ardal, S., Donald, M. W., Meuter, R., Muldrew, S., & Luce, M. (1990). Brain responses to semantic incongruity in bilinguals. Brain and Language, 39 (2), 187205. https://doi.org/10.1016/0093-934X(90)90011-5Google Scholar
Basnight-Brown, D. M., & Altarriba, J. (2007). Differences in semantic and translation priming across languages: the role of language direction and language dominance. Memory & Cognition, 35 (5), 953965. https://doi.org/10.3758/BF03193468Google Scholar
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological).Google Scholar
Bentin, S., Mouchetant-Rostaing, Y., Giard, M. H., Echallier, J. F., & Pernier, J. (1999). ERP manifestations of processing printed words at different psycholinguistic levels: time course and scalp distribution. Journal of Cognitive Neuroscience, 11 (3), 235260. https://doi.org/10.1162/089892999563373Google Scholar
Besner, D., Dennis, I., Davelaar, E., Besner, D., & Davelaar, E. (1985). Reading without phonology? The Quarterly Journal of Experimental Psychology, 37 (A), 477491. https://doi.org/10.1080/14640748508400945Google Scholar
Bialystok, E., Craik, F. I. M., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Sciences, 16 (4), 240249. https://doi.org/10.1016/j.tics.2012.03.001Google Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19 (12), 27672796. https://doi.org/10.1093/cercor/bhp055Google Scholar
Blumenfeld, H. K., & Marian, V. (2013). Parallel language activation and cognitive control during spoken word recognition in bilinguals. Journal of Cognitive Psychology, 25 (5), 547567. https://doi.org/10.1080/20445911.2013.812093Google Scholar
Briesemeister, B. B., Hofmann, M. J., Tamm, S., Kuchinke, L., Braun, M., & Jacobs, A. M. (2009). The pseudohomophone effect: Evidence for an orthography-phonology-conflict. Neuroscience Letters, 455 (2), 124128. https://doi.org/10.1016/j.neulet.2009.03.010Google Scholar
Brown, C., & Hagoort, P. (1993). The Processing Nature of the N400: Evidence from Masked Priming. Journal of Cognitive Neuroscience, 5 (1), 3444. https://doi.org/10.1162/jocn.1993.5.1.34Google Scholar
Carrasco-Ortiz, H., Midgley, K. J., & Frenck-Mestre, C. (2012). Are phonological representations in bilinguals language specific? An ERP study on interlingual homophones. Psychophysiology, 49 (4), 531543. https://doi.org/10.1111/j.1469-8986.2011.01333.xGoogle Scholar
Carreiras, M., Armstrong, B. C., Perea, M., & Frost, R. (2014). The what, when, where, and how of visual word recognition. Trends in Cognitive Sciences, 18 (2), 9098. https://doi.org/10.1016/j.tics.2013.11.005Google Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108 (1), 204–56. https://doi.org/10.1037/0033-295X.108.1.204Google Scholar
Costa, A., Hernández, M., & Sebastián-Gallés, N. (2008). Bilingualism aids conflict resolution: Evidence from the ANT task. Cognition, 106 (1), 5986. https://doi.org/10.1016/j.cognition.2006.12.013Google Scholar
Deacon, D., Dynowska, A., Ritter, W., & Grose-Fifer, J. (2004). Repetition and semantic priming of nonwords: Implications for theories of N400 and word recognition. Psychophysiology, 41 (1), 6074. https://doi.org/10.1111/1469-8986.00120Google Scholar
Deacon, D., Hewitt, S., Yang, C. M., & Nagata, M. (2000). Event-related potential indices of semantic priming using masked and unmasked words: Evidence that the N400 does not reflect a post-lexical process. Cognitive Brain Research, 9 (2), 137146. https://doi.org/10.1016/S0926-6410(99)00050-6Google Scholar
de Groot, A. M. B., & Nas, G. L. J. (1991). Lexical representation of cognates and noncognates in compound bilinguals. Journal of Memory and Language, 30 (1), 90123. https://doi.org/10.1016/0749-596X(91)90012-9Google Scholar
Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15 (6), 254262. https://doi.org/10.1016/j.tics.2011.04.003Google Scholar
Dehaene, S., Naccache, L., Cohen, L., Bihan, D. L., Mangin, J. F., Poline, J. B., & Rivière, D. (2001). Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neuroscience, 4 (7), 752758. https://doi.org/10.1038/89551Google Scholar
Dijkstra, T., & Van Heuven, W. J. B. (1998). The BIA model and bilingual word recognition. In Localist connectionist approaches to human cognition (pp. 189225).Google Scholar
Dijkstra, T., & Van Heuven, W. J. B. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition. https://doi.org/10.1017/S1366728902003012Google Scholar
Dimitropoulou, M., Duñabeitia, J. A., & Carreiras, M. (2011). Phonology by itself: Masked phonological priming effects with and without orthographic overlap. Journal of Cognitive Psychology, 23 (2), 185203. https://doi.org/10.1080/20445911.2011.477811Google Scholar
Duñabeitia, J. A., Dimitropoulou, M., Dowens, M. G., Molinaro, N., & Martin, C. (2015). The electrophysiology of the bilingual brain. In Methods in Bilingual Reading Comprehension Research by Heredia, Roberto R., Altarriba, Jeanette, Cieślicka, Anna B. (pp. 265–312). https://doi.org/10.1007/978-1-4939-2993-1Google Scholar
Elgort, I., Perfetti, C. A., Rickles, B., & Stafura, J. Z. (2016). Contextual learning of L2 word meanings: Second language proficiency modulates behavioural and ERP indicators of learning. Language of Cognitive Neuroscience, 30 (5), 506528. https://doi.org/10.1002/aur.1474.ReplicationGoogle Scholar
Finkbeiner, M., Forster, K., Nicol, J., & Nakamura, K. (2004). The role of polysemy in masked semantic and translation priming. Journal of Memory and Language, 51 (1), 122. https://doi.org/10.1016/j.jml.2004.01.004Google Scholar
Forster, K. I., & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10 (4), 680698. https://doi.org/10.1037/0278-7393.10.4.680Google Scholar
Frost, R. (1998). Toward a Strong Phonological Theory of Visual Word Recognition: True Issues and False Trails. Psychological Bulletin, 123 (1), 7199. https://doi.org/10.1037/0033-2909.123.1.71Google Scholar
Grainger, J., & Jacobs, A. M. (1999). Temporal Integration of Information in Orthographic Priming. Visual Cognition, 6 (3–4), 461492. https://doi.org/10.1080/135062899395064Google Scholar
Grosjean, F. (2014). Bicultural bilinguals. International Journal of Bilingualism, 19 (5), 572586. https://doi.org/10.1177/1367006914526297Google Scholar
Ha Duy Thuy, D., Matsuo, K., Nakamura, K., Toma, K., Oga, T., Nakai, T., Shibasaki, H., & Fukuyama, H. (2004). Implicit and explicit processing of kanji and kana words and non-words studied with fMRI. NeuroImage, 23 (3), 878889. https://doi.org/10.1016/j.neuroimage.2004.07.059Google Scholar
Haigh, C. A., & Jared, D. (2007). The activation of phonological representations by bilinguals while reading silently: evidence from interlingual homophones. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33 (4), 623644. https://doi.org/10.1037/0278-7393.33.4.623Google Scholar
Hauk, O., Coutout, C., Holden, A., & Chen, Y. (2012). The time-course of single-word reading: Evidence from fast behavioral and brain responses. NeuroImage, 60 (2), 14621477. https://doi.org/10.1016/j.neuroimage.2012.01.061Google Scholar
Hauk, O., Davis, M. H., Ford, M., Pulvermüller, F., & Marslen-Wilson, W. D. (2006). The time course of visual word recognition as revealed by linear regression analysis of ERP data. NeuroImage, 30 (4), 13831400. https://doi.org/10.1016/j.neuroimage.2005.11.048Google Scholar
Henson, R. N., Eckstein, D., Waszak, F., Frings, C., & Horner, A. J. (2014). Stimulus-response bindings in priming. Trends in Cognitive Sciences, 18 (7), 376383. https://doi.org/10.1016/j.tics.2014.03.004Google Scholar
Hoshino, N., & Thierry, G. (2012). Do Spanish-English Bilinguals have Their Fingers in Two Pies - or is It Their Toes? An Electrophysiological Investigation of Semantic Access in Bilinguals. Frontiers in Psychology, 3 (FEB), 16. https://doi.org/10.3389/fpsyg.2012.00009Google Scholar
Jiang, N. (1999). Testing processing explanations for the asymmetry in masked cross-language priming. Bilingualism: Language and Cognition, 2 (1), 5975. https://doi.org/10.1017/S1366728999000152Google Scholar
Jouravlev, O., & Jared, D. (2014a). Reading Russian–English homographs in sentence contexts: Evidence from ERPs. Bilingualism: Language and Cognition, 17 (1), 153168. https://doi.org/10.1017/S1366728913000205Google Scholar
Jouravlev, O., Lupker, S. J., & Jared, D. (2014b). Cross-language phonological activation: Evidence from masked onset priming and ERPs. Brain and Language, 134, 1122. https://doi.org/10.1016/j.bandl.2014.04.003Google Scholar
Kerkhofs, R., Dijkstra, T., Chwilla, D. J., & De Bruijn, E. R. A. (2006). Testing a model for bilingual semantic priming with interlingual homographs: RT and N400 effects. Brain Research, 1068 (1), 170183. https://doi.org/10.1016/j.brainres.2005.10.087Google Scholar
Kiefer, M. (2002). The N400 is modulated by unconsciously perceived masked words: Further evidence for an automatic spreading activation account of N400 priming effects. Cognitive Brain Research, 13 (1), 2739. https://doi.org/10.1016/S0926-6410(01)00085-4Google Scholar
Kim, K. H., Relkin, N. R., Lee, K. M., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388 (6638), 171174. https://doi.org/10.1038/40623Google Scholar
Kim, S. Y., Qi, T., Feng, X., Ding, G., Liu, L., & Cao, F. (2015). How does language distance between L1 and L2 affect the L2 brain network? An fMRI study of Korean-Chinese-English trilinguals. NeuroImage, 129, 115. https://doi.org/10.1016/j.neuroimage.2015.11.068Google Scholar
Kroll, J. F., & Stewart, E. (1994). Category interference in translation and picture naming: evidence for asymetric connections between bilingual memory representations. Journal of Memory and Language, 33, 149174.Google Scholar
Kroll, J., van Hell, J. G., Tokowicz, N., & Green, D. W. (2010). The revised hierarchical model: a critical review and assessment. Bilingualism, 13 (3), 373381. https://doi.org/10.1017/S136672891000009X.TheGoogle Scholar
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621–47. https://doi.org/10.1146/annurev.psych.093008.131123Google Scholar
Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: brain potentials reflect semantic incongruity. Science, 207 (4427), 203205.Google Scholar
Lau, E. F., Phillips, C., & Poeppel, D. (2008). A cortical network for semantics: (de)constructing the N400. Nature Reviews Neuroscience, 9 (12), 920933. https://doi.org/Doi10.1038/Nrn2532Google Scholar
Liu, C., Zhang, W. T., Tang, Y. Y., Mai, X. Q., Chen, H. C., Tardif, T., & Luo, Y. J. (2008). The Visual Word Form Area: Evidence from an fMRI study of implicit processing of Chinese characters. NeuroImage, 40 (3), 13501361. https://doi.org/10.1016/j.neuroimage.2007.10.014Google Scholar
Luck, S. (2005). An Introduction to the Event-related Potential Technique. MIT Press. https://doi.org/10.4155/fmc.12.40Google Scholar
Lukatela, G., & Turvey, M. T. (1994). Visual lexical access is initially phonological: 2. Evidence from phonological priming by homophones and pseudohomophones. Journal of Experimental Psychology: General, 123 (4), 331353. https://doi.org/10.1037/0096-3445.123.4.331Google Scholar
Marian, V., Blumenfeld, H. K., & Kaushanskaya, M. (2007). The Language Experience and Proficiency Questionnaire (LEAP-Q): Assessing Language Profiles in Bilinguals and Multilinguals, 50 (August), 940967.Google Scholar
Marian, V., & Spivey, M. (2003). Bilingual and monolingual processing of competing lexical items. Applied Psycholinguistics, 24 (2), 173193. https://doi.org/10.1017/S0142716403000092Google Scholar
Marian, V., Spivey, M., & Hirsch, J. (2003). Shared and separate systems in bilingual language processing: Converging evidence from eyetracking and brain imaging. Brain and Language, 86 (1), 7082. https://doi.org/10.1016/S0093-934X(02)00535-7Google Scholar
Maurer, U., Brandeis, D., & McCandliss, B. D. (2005). Fast, visual specialization for reading in English revealed by the topography of the N170 ERP response. Behavioral and Brain Functions, 1, 13. https://doi.org/10.1186/1744-9081-1-13Google Scholar
Newman, R. L., & Connolly, J. F. (2004). Determining the role of phonology in silent reading using event-related brain potentials. Cognitive Brain Research, 21 (1), 94105. https://doi.org/10.1016/j.cogbrainres.2004.05.006Google Scholar
Novitski, N., Anourova, I., Martinkauppi, S., Aronen, H. J., Näätänen, R., & Carlson, S. (2003). Effects of noise from functional magnetic resonance imaging on auditory event-related potentials in working memory task. NeuroImage, 20 (2), 13201328. https://doi.org/10.1016/S1053-8119(03)00390-2 [doi]; S1053811903003902 [pii]Google Scholar
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9 (1), 97113. https://doi.org/10.1016/0028-3932(71)90067-4Google Scholar
Paap, K. R., Johnson, H. A., & Sawi, O. (2015). Bilingual advantages in executive functioning either do not exist or are restricted to very specific and undetermined circumstances. Cortex, 69, 265278. https://doi.org/10.1016/j.cortex.2015.04.014Google Scholar
Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18 (1), 4965. https://doi.org/10.1016/0167-8760(84)90014-XGoogle Scholar
Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci, 8 (12), 976987. https://doi.org/10.1038/nrn2277Google Scholar
Perani, D., Abutalebi, J., Paulesu, E., Brambati, S., Scifo, P., Cappa, S. F., & Fazio, F. (2003). The role of age of acquisition and language usage in early, high-proficient bilinguals: An fMRI study during verbal fluency. Human Brain Mapping, 19 (3), 170182. https://doi.org/10.1002/hbm.10110Google Scholar
Price, C. J., & Devlin, J. T. (2003). The myth of the visual word form area. NeuroImage, 19 (3), 473481. https://doi.org/10.1016/S1053-8119(03)00084-3Google Scholar
Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62 (2), 816847. https://doi.org/10.1016/j.neuroimage.2012.04.062Google Scholar
R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistica.Google Scholar
Rastle, K., & Brysbaert, M. (2006). Masked phonological priming effects in English: Are they real? Do they matter? Cognitive Psychology, 53 (2), 97145. https://doi.org/10.1016/j.cogpsych.2006.01.002Google Scholar
Schoonbaert, S., Duyck, W., Brysbaert, M., & Hartsuiker, R. J. (2009). Semantic and translation priming from a first language to a second and back: Making sense of the findings. Memory & Cognition, 37 (5), 569–86. https://doi.org/10.3758/MC.37.5.569Google Scholar
Shtyrov, Y., & MacGregor, L. J. (2016). Near-instant automatic access to visually presented words in the human neocortex: neuromagnetic evidence. Scientific Reports, 6 (November 2015), 26558. https://doi.org/10.1038/srep26558Google Scholar
Singh, N., & Mishra, R. K. (2015). Unintentional Activation of Translation Equivalents in Bilinguals Leads to Attention Capture in a Cross-Modal Visual Task. PLoS ONE, 10 (3), 115. https://doi.org/10.1371/journal.pone.0120131Google Scholar
Spivey, M. J., & Marian, V. (1999). Cross talk between native and second languages: Partial activation of an irrelevant lexicon. Psychological Science, 10 (3), 281284. https://doi.org/10.1111/1467-9280.00151Google Scholar
Thierry, G., & Wu, Y. J. (2007). Brain potentials reveal unconscious translation during foreign-language comprehension. Proceedings of the National Academy of Sciences of the United States of America, 104 (30), 1253012535. https://doi.org/10.1073/pnas.0609927104Google Scholar
Ullman, M. T. (2001). A Neurocognitive Perspective on Language: The Declarative/Procedural Model. Nature Reviews Neuroscience, 2 (10), 717726.Google Scholar
Van Heuven, W. J. B., & Dijkstra, T. (2010). Language comprehension in the bilingual brain: fMRI and ERP support for psycholinguistic models. Brain Research Reviews, 64 (1), 104122. https://doi.org/10.1016/j.brainresrev.2010.03.002Google Scholar
Van Petten, C. K., & Luka, B. J. (2006). Neural localization of semantic context effects in electromagnetic and hemodynamic studies. Brain and Language, 97 (3), 279293. https://doi.org/10.1016/j.bandl.2005.11.003Google Scholar
Van Wijnendaele, I., & Brysbaert, M. (2002). Visual word recognition in bilinguals: phonological priming from the second to the first language. Journal of Experimental Psychology. Human Perception and Performance, 28 (3), 616627. https://doi.org/10.1037/0096-1523.28.3.616Google Scholar
Xia, V., & Andrews, S. (2015). Masked translation priming asymmetry in Chinese-English bilinguals: Making sense of the Sense Model. The Quarterly Journal of Experimental Psychology, 68 (2), 294325. https://doi.org/10.1080/17470218.2014.944195Google Scholar
Supplementary material: PDF

Novitskiy et al. supplementary material

Table S1

Download Novitskiy et al. supplementary material(PDF)
PDF 191.4 KB