Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T16:01:02.495Z Has data issue: false hasContentIssue false

Bilingual exposure enhances left IFG specialization for language in children

Published online by Cambridge University Press:  18 June 2018

MARIA M. ARREDONDO
Affiliation:
University of British Columbia
XIAO-SU HU
Affiliation:
University of Michigan
ERICA SEIFERT
Affiliation:
University of Michigan
TERESA SATTERFIELD
Affiliation:
University of Michigan
IOULIA KOVELMAN*
Affiliation:
University of Michigan
*
Address for correspondence: Ioulia Kovelman, University of Michigan, Department of Psychology, 530 Church St., East Hall building, Ann Arbor, MI 48109-1043, United States. [email protected]

Abstract

Language acquisition is characterized by progressive use of inflectional morphology marking verb tense and agreement. Linguistic milestones are also linked to left-brain lateralization for language specialization. We used neuroimaging (fNIRS) to investigate how bilingual exposure influences children's cortical organization for processing morpho-syntax. In Study 1, monolinguals and bilinguals (n = 39) completed a grammaticality judgment task that included English sentences with violations in earlier-acquired (verb agreement) and later-acquired (verb tense/agreement) structures. Groups showed similar performance and greater activation in left inferior frontal region (IFG) for later- than earlier-acquired conditions. Bilinguals showed stronger and more restricted left IFG activation. In Study 2, bilinguals completed a comparable Spanish task revealing patterns of left IFG activation similar to English. Taken together, the findings suggest that bilinguals with linguistic competence at parity with monolingual counterparts have a higher degree of cortical specialization for language, likely a result of enriched linguistic experiences.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*The authors thank the University of Michigan Departments of Psychology, Romance Languages and Literatures, and Center for Human Growth and Development. The authors also thank the ‘En Nuestra Lengua’ Literacy and Culture Program in Ann Arbor, Michigan, participating families, Lourdes M. Delgado Reyes, Ka I Ip, Jaime Muñoz Velazquez, Paola Velosa, Stefanie Younce, and Melanie Armstrong for their assistance with data collection. Maria Arredondo thanks the National Science Foundation Graduate Research Fellowship (NSF GRFP, Grant No. DGE 1256260). Ioulia Kovelman thanks the National Institutes of Health (R01HD078351 PI: Hoeft). Any opinions, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF or NIH.

Supplementary material can be found online at https://doi.org/10.1017/S1366728918000512

References

Abutalebi, J., & Green, D. W. (2016). Neuroimaging of language control in bilinguals: neural adaptation and reserve. Bilingualism: Language and Cognition, 19, 689698. Doi: 10.1017/S1366728916000225Google Scholar
Archila-Suerte, P., Zevin, J., & Hernandez, A. E. (2015). The effect of age of acquisition, socioeducational status, and proficiency on the neural processing of second language speech sounds. Brain and Language, 141, 3549. Doi: 10.1016/j.bandl.2014.11.005Google Scholar
Arredondo, M. M., Hu, X., Satterfield, T., & Kovelman, I. (2016). Bilingualism alters children's frontal lobe functioning for attentional control. Developmental Science. Doi: 10.1111/desc.12377Google Scholar
Bedore, L. M., & Leonard, L. B. (2001). Grammatical morphology deficits in Spanish-speaking children with specific language impairment. Journal of Speech, Language, and Hearing Research, 44, 905924. Doi: 10.1044/1092-4388(2001/072)Google Scholar
Bedore, L. M., & Leonard, L. B. (2005). Verb inflections and noun phrase morphology in the spontaneous speech of Spanish-speaking children with specific language impairment. Applied Psycholinguistics, 26, 195225. Doi: 10.1017/S0142716405050149Google Scholar
Bedore, L. M., Peña, E. D., Griffin, Z. M., & Hixon, J. G. (2016). Effects of age of English exposure, current input/output, and grade on bilingual language performance. Journal of Child Language, 43, 687706. Doi: 10.1017/S0305000915000811Google Scholar
Berken, J. A., Gracco, V. L., Chen, J.-K., Watkins, K. E., Baum, S., Callahan, M., & Klein, D. (2015). Neural activation in speech production and reading aloud in native and non-native languages. NeuroImage, 112, 208217. Doi: 10.1016/j.neuroimage.2015.03.016Google Scholar
Boersma, P., & Weenink, D. (2008). Praat: doing phonetics by computer (Version 5.0.21) [Computer program]. http://www.praat.org/Google Scholar
Brownell, R. (2000). Receptive One-Word Picture Vocabulary Test (ROWPVT) Spanish-Bilingual Edition. Novato, CA: Academic Therapy Publications.Google Scholar
Caplan, D., Alpert, N., & Waters, G. (1998). Effects of syntactic structure and propositional number on patterns of regional cerebral blood flow. Journal of Cognitive Neuroscience, 10, 541552. Doi: 10.1162/089892998562843Google Scholar
Chee, M. W., Tan, E. W., & Thiel, T. (1999). Mandarin and English single word processing studied with functional magnetic resonance imaging. Journal of Neuroscience, 19, 30503056.Google Scholar
Coltheart, M. (1981). The MRC psycholinguistic database. Quarterly Journal of Experimental Psychology, 33A, 497505.Google Scholar
Consonni, M., Cafiero, R., Marin, D., Tettamanti, M., ladanza, A., Fabbro, F., & Perani, D. (2013). Neural convergence for language comprehension and grammatical class production in highly proficient bilinguals is independent of age of acquisition. Cortex, 49, 12521258. Doi: 10.1016/j.cortex.2012.04.009Google Scholar
Cook, V. J. (1991). The poverty-of-the-stimulus argument and multicompetence. Second Language Research, 7, 103117.Google Scholar
Cook, V. (2003). Effects of the Second Language on the First. Multilingual Matters Ltd: Tonawanda, NY.Google Scholar
Costa, A., & Sebastián-Gallés, N. (2014). How does the bilingual experience sculpt the brain? Nature Reviews: Neuroscience, 15, 336345. Doi: 10.1038/nrn3709Google Scholar
Cummins, J. (2001). Bilingual children's mother tongue: why is it important for education. Sprogforum, 19, 1520.Google Scholar
Dale, A. M. (1999). Optimal experimental design for event-related fMRI. Human Brain Mapping, 8, 109114.Google Scholar
Dehaene-Lambertz, G., Hertz-Pannier, L., Dubois, J., Mériaux, S., Roche, A., Sigman, M., & Dehaene, S. (2006). Functional organization of perisylvian activation during presentation of sentences in preverbal infants. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 103, 1421014245. Doi: 10.1073/pnas.0606302103Google Scholar
De Houwer, A. (1995). Bilingual language acquisition. In Fletcher, P. & MacWhinney, B. (Eds.), The Handbook of Child Language (pp. 219250). Oxford, UK: Blackwell.Google Scholar
Dominguez, L (2003). Interpreting reference in the early acquisition of Spanish clitic. In Montrul, S. & Ordoñez, F. (Eds.), Linguistic Theory and Language Development in Hispanic Languages (pp. 212228). Amsterdam, Netherlands: Johns Benjamins.Google Scholar
Du, L. (2010). Initial Bilingual Development: One Language or Two? Asian Social Science, 6.5, 132139. Doi: 10.5539/ass.v6n5p132Google Scholar
Francis, D., Carlo, M., August, D., Kenyon, D., Malabonga, V., Caglarcan, S., & Louguit, M. (2001). Test of Phonological Processing in Spanish (TOPPS). Washington, DC: Center for Applied Linguistics.Google Scholar
Felton, A., Vazquez, D., Ramos-Nunez, A. I., Greene, M. R., Macbeth, A., Hernandez, A. E., & Chiarello, C. (2017). Bilingualism influences structural indices of interhemispheric organization. Journal of Neurolinguistics, 42, 111. Doi: 10.1016/j.jneuroling.2016.10.004Google Scholar
Frenck-Mestre, C., Carrasco-Ortiz, H., McLaughlin, J., Osterhout, L., & Foucart, A. (2010). Linguistic input factors in native and L2 processing of inflectional morphology: Evidence from ERPs and behavioral studies. Language, Interaction and Acquisition, 1, 206228. Doi: 10.1075/lia.1.2.04freGoogle Scholar
Friederici, A. D. (2011). The brain basis of language processing: from structure to function. Physiological Reviews, 91, 13571392. Doi: 10.1152/physrev.00006.2011Google Scholar
Friederici, A. D. (2012). The cortical language circuit: from auditory perception to sentence comprehension. Trends in Cognitive Sciences, 16, 262268. Doi: 10.1016/j.tics.2012.04.001Google Scholar
Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E., & Penny, W. D. (2006). Statistical Parametric Mapping: The Analysis of Functional Brain Images. London: Academic Press.Google Scholar
García-Pentón, L., Perez Fernández, A. P., Iturria-Medina, Y., Gillon-Dowens, M., & Carreiras, M. (2014). Anatomical connectivity changes in the bilingual brain. NeuroImage, 84, 495504. Doi: 10.1016/j.neuroimage.2013.08.064Google Scholar
Garcia-Sierra, A., Rivera-Gaxiola, M., Percaccio, C. R., Conboy, B. T., Romo, H., Klarman, L., Ortiz, S., & Kuhl, P. K. (2011). Bilingual language learning: an ERP study relating early brain responses to speech, language input, and later word production. Journal of Phonetics, 39, 546557. Doi: 10.1016/j.wocn.2011.07.002Google Scholar
Genesee, F. (1989). Early bilingual development: one language or two?. Journal of Child Language, 16, 161179. Doi: 10.1017/S0305000900013490Google Scholar
Gouvea, A. C., Phillips, C., Kazanina, N., & Poeppel, D. (2010). The linguistic processes underlying the P600. Language and Cognitive Processes, 25, 149188. Doi: 10.1080/01690960902965951Google Scholar
Green, D. W., & Abutalebi, J. (2013). Language control in bilinguals: The adaptive control hypothesis. Journal of Cognitive Psychology, 25, 515530. doi: 10.1080/20445911.2013.796377Google Scholar
Grinstead, J., Baron, A., Vega-Mendoza, M., De la Mora, J., Cantú-Sánchez, M., & Flores, B. (2013). Tense marking and spontaneous speech measures in Spanish specific language impairment: a discriminant function analysis. Journal of Speech, Language, and Hearing Research, 56, 352363. Doi: 10.1044/1092-4388(2012/11-0289)Google Scholar
Grinstead, J., Lintz, P., Vega-Mendoza, M., De la Mora, J., Cantú-Sánchez, M., & Flores-Avalos, B. (2014). Evidence of optional infinitive verbs in the spontaneous speech of Spanish-speaking children with SLI. Lingua, 140, 5266. Doi: 10.1016/j.lingua.2013.11.004Google Scholar
Grosjean, F. (1989). Neurolinguists, beware! The bilingual is not two monolinguals in one person. Brain and Language, 36, 315. Doi: 10.1016/0093-934X(89)90048-5Google Scholar
Guasti, M. T. (1993). Verb syntax in Italian child grammar: Finite and nonfinite verbs. Language acquisition, 3, 140. Doi: 10.1207/s15327817la0301_1Google Scholar
Guasti, M. T. (2002). Language Acquisition: The Growth of Grammar. MIT Press.Google Scholar
Hasegawa, M., Carpenter, P. A., & Just, M. A. (2002). An fMRI study of bilingual sentence comprehension and workload. NeuroImage, 15, 647660. Doi: 10.1006/nimg.2001.1001Google Scholar
Hernandez, A. E., Bates, E. A., & Avila, L. X. (1994). On-line sentence interpretation in Spanish-English bilinguals: what does it mean to be “in between”? Applied Psycholinguistics, 15, 417446. Doi: 10.1017/S014271640000686XGoogle Scholar
Hernandez, A. E., & Li, P. (2007). Age of acquisition: its neural and computational mechanisms. Psychological Bulletin, 133, 638650. Doi: 10.1037/0033-2909.133.4.638Google Scholar
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393. Doi: 10.1038/nrn2113Google Scholar
Holland, S. K., Vannest, J., Mecoli, M., Jacola, L. M., Tillema, J.-M., Karunanayaka, P. R., Schmithorst, V. J., Yuan, W., Plante, E., & Byars, A. W. (2007). Functional MRI of language lateralization during development in children. International Journal of Audiology, 46, 533551. Doi: 10.1080/14992020701448994Google Scholar
Hu, X. S., Hong, K. S., Ge, S. S., & Jeong, M. Y. (2010). Kalman estimator- and general linear model-based on-line brain activation mapping by near-infrared spectroscopy. Biomedical Engineering Online, 9. Doi: 10.1186/1475-925X-9-82.Google Scholar
Huppert, T. J., & Barker, J. W. (2015). +NIRS Toolbox. Retrieved from https://bitbucket.org/huppertt/nirs-toolbox/downloadsGoogle Scholar
Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2009). HomER: A review of times-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics, 48, D280–298. Doi: 10.1364/AO.48.00D280Google Scholar
Imada, T., Zhang, Y., Cheour, M., Taulu, S., Ahonen, A., & Kuhl, P. K. (2006). Infant speech perception activates Broca's area: a developmental magnetoencephalography study. NeuroReport, 17, 957962. Doi: 10.1097/01.wnr.0000223387.51704.89Google Scholar
Jasinska, K. K., & Petitto, L. A. (2013). How age of bilingual exposure can change the neural systems for language in the developing brain: A functional near infrared spectroscopy investigation of syntactic processing in monolingual and bilingual children. Developmental Cognitive Neuroscience, 6, 87101. Doi: 10.1016/j.dcn.2013.06.005Google Scholar
Johnson, M. H. (2011). Interactive specialization: a domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1, 721. Doi: 10.1016/j.dcn.2010.07.003Google Scholar
Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. NeuroImage, 34, 16001611. Doi: 10.1016/j.neuroimage.2006.09.024Google Scholar
Just, M. A., Carpenter, P. A., Keller, T. A., Eddy, W. F., & Thulborn, K. R. (1996). Brain activation modulated by sentence comprehension. Science, 274, 114116. Doi: 10.1126/science.274.5284.114Google Scholar
Kaufman, A., & Kaufman, N. (2004). Kaufman Brief Intelligence Test Second Edition (KBIT-2). Minneapolis, MN: Pearson.Google Scholar
Keller, T. A., Carpenter, P. A., & Just, M. A. (2001). The neural bases of sentence comprehension: a fMRI examination of syntactic and lexical processing. Cerebral Cortex, 11, 223237. Doi: 10.1093/cercor/11.3.223Google Scholar
Klein, D., Mok, K., Chen, J. K., & Watkins, K. E. (2014). Age of language learning shapes brain structure: a cortical thickness study of bilingual and monolingual individuals. Brain and Language, 131, 2024. Doi: 10.1016/j.bandl.2013.05.014Google Scholar
Knoll, L. J., Obleser, J., Schipke, C. S., Friederici, A. D., & Brauer, J. (2012). Left prefrontal cortex activation during sentence comprehension covaries with grammatical knowledge in children. NeuroImage, 62, 207216. Doi: 10.1016/j.neuroimage.2012.05.014Google Scholar
Kovelman, I., Baker, S. A., & Petitto, L. A. (2008). Bilingual and monolingual brains compared: a functional magnetic resonance imaging investigation of syntactic processing and a possible “neural signature” of bilingualism. Journal of Cognitive Neuroscience, 20, 153160. Doi: 10.1162/jocn.2008.20011Google Scholar
Kroll, J. F., Dussias, P. E., Bice, K., & Perrotti, L. (2015). Bilingualism, mind, and brain. Annual Review of Linguistics, 1, 377394. Doi: 10.1146/annurev-linguist-030514-124937Google Scholar
Kuo, L-J., & Anderson, R. C. (2010). Beyond cross-language transfer: reconceptualizing the impact of early bilingualism on phonological awareness. Scientific Studies of Reading, 14, 365385. Doi: 10.1080/10888431003623470Google Scholar
Kweon, S. O., & Bley-Vroman, R. (2011). Acquisition of the constraints on wanna contraction by advanced second language learners: Universal Grammar and imperfect knowledge. Second Language Research, 27, 207228. Doi: 10.1177/0267658310375756Google Scholar
Li, P., Legault, J., & Litcofsky, K. A. (2014). Neuroplasticity as a function of second language learning: anatomical changes in the human brain. Cortex, 58, 301324. Doi: 10.1016/j.cortex.2014.05.001Google Scholar
Luke, K. K., Liu, H. L., Wai, Y. Y., Wan, Y. L., & Tan, L. H. (2002). Functional anatomy of syntactic and semantic processing in language comprehension. Human Brain Mapping, 16, 133145. Doi: 10.1002/hbm.10029Google Scholar
MacSwan, J. (2017). A multilingual perspective on translanguaging. American Educational Research Journal, 54, 167201. Doi: 10.3102/0002831216683935Google Scholar
Mechelli, A., Crinion, J. T., Noppeney, U., O'Doherty, J., Ashburner, J., Frackowiak, R. S., & Price, C. J. (2004). Neurolinguistics: structural plasticity in the bilingual brain. Nature, 431, 757. Doi: 10.1038/431757aGoogle Scholar
Nuñez, S. C., Dapretto, M., Katzir, T., Starr, A., Bramen, J., Kan, E., Bookheimer, S., & Sowell, E. R. (2011). fMRI of syntactic processing in typically developing children: structural correlates in the inferior frontal gyrus. Developmental Cognitive Neuroscience, 1, 313323. Doi: 10.1016/j.dcn.2011.02.004Google Scholar
Oberecker, R., & Friederici, A. D. (2006). Syntactic event-related potential components in 24-month-olds’ sentence comprehension. NeuroReport, 17, 10171021. Doi: 10.1097/01.wnr.0000223397.12694.9aGoogle Scholar
Osterhout, L., & Holcomb, P. J. (1992). Event-related brain potentials elicited by syntactic anomaly. Journal of Memory and Language, 31, 785806. Doi: 10.1016/0749-596X(92)90039-ZGoogle Scholar
Parker-Jones, O., Green, D. W., Grogan, A., Pliatsikas, C., Filippopolitis, K., Ali, N., Lee, H. L., Ramsden, S., Gazarian, K., Prejawa, S., Seghier, M. L., & Price, C. J. (2012). Where, when and why brain activation differs for bilinguals and monolinguals during picture naming and reading aloud. Cerebral Cortex, 22, 892902. Doi: 10.1093/cercor/bhr161Google Scholar
Peña, E. D., Bedore, L. M., & Kester, E. S. (2015). Assessment of language impairment in bilingual children using semantic tasks: two languages classify better than one. International Journal of Language & Communication Disorders, 51, 192202. Doi: 10.1111/1460-6984.12199Google Scholar
Peña, M., Maki, A., Kovac̆ić, D., Dehaene-Lambertz, G., Koizumi, H., Bouquet, F., & Mehler, J. (2003). Sounds and silence: an optical topography study of language recognition at birth. Proceedings of the National Academy of Sciences, 100, 1170211705. Doi: 10.1073/pnas.1934290100Google Scholar
Perani, D., Paulesu, E., Sebastián-Gallés, N., Dupoux, E., Dehaene, S., Bettinardi, V., Cappa, S. F., Fazio, F., & Mehler, J. (1998). The bilingual brain. Proficiency and age of acquisition of the second language. Brain: A Journal of Neurology, 121, 18411852. Doi: 10.1093/brain/121.10.1841Google Scholar
Petitto, L. A., Berens, M. S., Kovelman, I., Dubins, M. H., Jasinska, K., & Shalinsky, M. (2012). The “perceptual wedge hypothesis” as the basis for bilingual babies’ phonetic processing advantage: new insights from fNIRS brain imaging. Brain and Language, 121, 130143. Doi: 10.1016/j.bandl.2011.05.003Google Scholar
Petitto, L. A., & Kovelman, I. (2003). The bilingual paradox: How signing-speaking bilingual children help us to resolve it and teach us about the brain's mechanisms underlying all language acquisition. Learning Languages, 8, 518.Google Scholar
Phillips, C. (2009). Should we impeach armchair linguists. Japanese/Korean Linguistics, 17, 4964.Google Scholar
Prat, C. S., & Just, M. A. (2010). Exploring the neural dynamics underpinning individual differences in sentence comprehension. Cerebral Cortex, 21, 17471760. Doi: 10.1093/cercor/bhq241Google Scholar
Prat, C. S., Keller, T. A., & Just, M. A. (2007). Individual differences in sentence comprehension: a functional magnetic resonance imaging investigation of syntactic and lexical processing demands. Journal of Cognitive Neuroscience, 19, 19501963. Doi: 10.1162/jocn.2007.19.12.1950Google Scholar
Pratt, A., & Grinstead, J. (2007). Optional infinitives in child Spanish. In Proceedings of the 2nd Conference on Generative Approaches to Language Acquisition North America (GALANA) (pp. 351362). Somerville, MA: Cascadilla Proceedings Project.Google Scholar
Raizada, R. D., Richards, T. L., Meltzoff, A., & Kuhl, P. K. (2008). Socioeconomic status predicts hemispheric specialization of the left inferior frontal gyrus in young children. NeuroImage, 40, 13921401. Doi: 10.1016/j.neuroimage.2008.01.021Google Scholar
Restrepo, M. A., & Gutiérrez-Clellen, V. F. (2001). Article use in Spanish-speaking children with specific language impairment. Journal of Child Language, 28, 433452. Doi: 10.1017/S0305000901004706Google Scholar
Rice, M. L., & Wexler, K. (2001). Rice/Wexler Test of Early Grammatical Impairment. San Antonio, TX: Psychological Corporation.Google Scholar
Rice, M. L., Wexler, K., & Cleave, P. L. (1995). Specific language impairment as a period of extended optional infinitive. Journal of Speech, Language, and Hearing Research, 38, 850863. Doi: 10.1044/jshr.3804.850Google Scholar
Rice, M. L., Wexler, K., & Hershberger, S. (1998). Tense over time: The longitudinal course of tense acquisition in children with specific language impairment. Journal of Speech, Language, and Hearing Research, 41, 14121431. Doi: 10.1044/jslhr.4106.1412Google Scholar
Rice, M. L., Wexler, K., & Redmond, S. M. (1999). Grammaticality judgments of an extended optional infinitive grammar: evidence from English-speaking children with specific language impairment. Journal of Speech, Language, and Hearing Research, 42, 943961. Doi: 10.1044/jslhr.4204.943Google Scholar
Roeper, T. (1999). Universal bilingualism. Bilingualism: Language and Cognition, 2, 169186.Google Scholar
Román, P., González, J., Ventura-Campos, N., Rodríguez-Pujadas, A., Sanjuán, A., & Avila, C. (2015). Neural differences between monolinguals and early bilinguals in their native language during comprehension. Brain & Language, 150, 8089. Doi: 10.1016/j.bandl.2015.07.011Google Scholar
Roncaglia-Denissen, M. P., & Kotz, S. A. (2016). What does neuroimaging tell us about morphosyntactic processing in the brain of second language learners?. Bilingualism: Language and Cognition, 19, 665673. Doi: 10.1017/S1366728915000413Google Scholar
Satterfield, T. (1999). Bilingual Selection of Syntactic Knowledge. Dordrecht: Kluwer Publishers.Google Scholar
Saur, D., Kreher, B. W., Schnell, S., Kümmerer, D., Kellmeyer, P., Vry, M-S., Umarova, R., Musso, M., Glauche, V., Abel, S., Huber, W., Rijntjes, M., Hennig, J., & Weiller, C. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences, 105, 1803518040. Doi: 10.1073/pnas.0805234105Google Scholar
Schütze, C., & Wexler, K. (1996). Subject case licensing and English root infinitives. In Proceedings of the 20th annual Boston University conference on language development (Vol. 2, pp. 670681). Somerville, MA: Cascadilla Proceedings Project.Google Scholar
Semel, E., Wiig, E. H., & Secord, W. A. (2003). Clinical Evaluation of Language Fundamentals Fourth Edition (CELF-4). Bloomington, MN: Pearson.Google Scholar
Semel, E., Wiig, E. H., & Secord, W. A. (2006). Clinical Evaluation of Language Fundamentals Fourth Spanish Edition (CELF-4). Bloomington, MN: Pearson.Google Scholar
Silva-Pereyra, J., Rivera-Gaxiola, M., & Kuhl, P. K. (2005). An event-related brain potential study of sentence comprehension in preschoolers: semantic and morphosyntactic processing. Cognitive Brain Research, 23, 247258. Doi: 10.1016/j.cogbrainres.2004.10.015Google Scholar
Skeide, M. A., Brauer, J., & Friederici, A. D. (2016). Brain functional and structural predictors of language performance. Cerebral Cortex, 26, 21272139. Doi: 10.1093/cercor/bhv042Google Scholar
Skeide, M. A., & Friederici, A. D. (2016). The ontogeny of the cortical language network. Nature Reviews Neuroscience, 17, 323332. Doi: 10.1038/nrn.2016.23Google Scholar
Tomasello, M. (2000). Do young children have adult syntactic competence? Cognition, 74, 209253.Google Scholar
Vihman, M. M. (2002). Getting started without a system: From phonetics to phonology in bilingual development. International Journal of Bilingualism, 6, 239254.Google Scholar
Vingerhoets, G., Van Borsel, J., Tesink, C., van den Noort, M., Deblaere, K., Seurinck, R., Vandemaele, P., & Achten, E. (2003). Multilingualism: an fMRI study. NeuroImage, 20, 21812196. Doi: 10.1016/j.neuroimage.2003.07.029Google Scholar
Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1999). Comprehensive Test of Phonological Processing (CTOPP). Austin, TX: Pro-Ed.Google Scholar
Wartenburger, I., Heekeren, H. R., Abutalebi, J., Cappa, S. F., Villringer, A., & Perani, D. (2003). Early setting of grammatical processing in the bilingual brain. Neuron, 37, 159170. Doi: 10.1016/S0896-6273(02)01150-9Google Scholar
Werker, J. F., & Hensch, T. K. (2015). Critical periods in speech perception: new directions. Annual Review of Psychology, 66, 173196. Doi: 10.1146/annurev-psych-010814-015104Google Scholar
Wexler, K. (1998). Very early parameter setting and the unique checking constraint: A new explanation of the optional infinitive stage. Lingua, 106, 2379. Doi: 10.1016/S0024-3841(98)00029-1Google Scholar
Supplementary material: File

Arredondo et al. supplementary material

Figures S1-S2 and Tables S1-S2

Download Arredondo et al. supplementary material(File)
File 342.4 KB