Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T18:49:56.318Z Has data issue: false hasContentIssue false

Why musical hierarchies?

Published online by Cambridge University Press:  30 September 2021

Courtney B. Hilton
Affiliation:
Department of Psychology, Harvard University, Cambridge, MA02138, USA. [email protected] School of Psychology, The University of Sydney, Camperdown, NSW2006, Australia
Rie Asano
Affiliation:
Institute of Musicology, Systematic Musicology, University of Cologne, Albertus-Magnus-Platz, 50923Cologne, Germany [email protected]
Cedric Boeckx
Affiliation:
ICREA (Catalan Institute for Advanced Studies and Research)/Universitat de Barcelona, Section of General Linguistics/Universitat de Barcelona Institute for Complex Systems (UBICS), Gran Via de les Corts Catalanes, 585, 08007Barcelona, Spain. [email protected]

Abstract

Credible signaling may have provided a selection pressure for producing and discriminating increasingly elaborate proto-musical signals. But, why evolve them to have hierarchical structure? We argue that the hierarchality of tonality and meter is a byproduct of domain-general mechanisms evolved for reasons other than credible signaling.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asano, R., & Boeckx, C. (2015). Syntax in language and music: What is the right level of comparison? Frontiers in Psychology, 6, 942. https://doi.org/10.3389/fpsyg.2015.00942.CrossRefGoogle ScholarPubMed
Asano, R., Boeckx, C., & Seifert, U. (2021). Hierarchical control as a shared neurocognitive mechanism for language and music. PsyArXiv. https://doi.org/10.31234/osf.io/25qha.Google ScholarPubMed
Badre, D., & Nee, D. E. (2018). Frontal cortex and the hierarchical control of behavior. Trends in Cognitive Sciences, 22(2), 170188.CrossRefGoogle ScholarPubMed
Barrett, R. L. C., Dawson, M., Dyrby, T. B., Krug, K., Ptito, M., D'Arceuil, H., … Catani, M. (2020). Differences in frontal network anatomy across primate species. The Journal of Neuroscience, 40(10), 20942107.CrossRefGoogle ScholarPubMed
Bill, J., Pailian, H., Gershman, S. J., & Drugowitsch, J. (2020). Hierarchical structure is employed by humans during visual motion perception. Proceedings of the National Academy of Sciences, 117(39), 2458124589. https://doi.org/10.1073/pnas.2008961117.CrossRefGoogle ScholarPubMed
Bouchet, H., Blois-Heulin, C., & Lemasson, A. (2013). Social complexity parallels vocal complexity: A comparison of three non-human primate species. Frontiers in Psychology, 4, 390. https://doi.org/10.3389/fpsyg.2013.00390.CrossRefGoogle ScholarPubMed
Brandt, A., Gebrian, M., & Slevc, L. R. (2012). Music and early language acquisition. Frontiers in Psychology, 3, 327. https://doi.org/10.3389/fpsyg.2012.00327.CrossRefGoogle ScholarPubMed
Byrne, R. W., & Russon, A. E. (1998). Learning by imitation: A hierarchical approach. Behavioral and Brain Sciences, 21(5), 667684.CrossRefGoogle ScholarPubMed
Byrne, R. W., Sanz, C. M., & Morgan, D. B. (2013). Chimpanzees plan their tool use. In Sanz, C., Call, J., & Boesch, C. (Eds.), Tool use in animals (pp. 4864). Cambridge University Press.CrossRefGoogle Scholar
Chomsky, N. (1957). Syntactic structures. Walter de Gruyter.CrossRefGoogle Scholar
Corrigall, K. A., & Trainor, L. J. (2014). Enculturation to musical pitch structure in young children: Evidence from behavioral and electrophysiological methods. Developmental Science, 17(1), 142158.CrossRefGoogle ScholarPubMed
Fitch, W. T., & Martins, M. D. (2014). Hierarchical processing in music, language, and action: Lashley revisited. Annals of the New York Academy of Sciences, 1316(1), 87104.CrossRefGoogle ScholarPubMed
Frith, C. D. (2012). The role of metacognition in human social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1599), 22132223.CrossRefGoogle ScholarPubMed
Geissmann, T. (2000). Gibbon songs and human music from an evolutionary perspective. In Wallin, N. L., Merker, B. & Brown, S. (Eds.), The origins of music (pp. 103123). MIT Press.Google Scholar
Greenfield, P. (1991). Language, tools and the brain: The ontogeny and phylogeny of hierarchically organized sequential behavior. Behavioral and Brain Sciences, 14(4), 570571.CrossRefGoogle Scholar
Hall, M. L., & Magrath, R. D. (2007). Temporal coordination signals coalition quality. Current Biology, 17(11), R406R407.CrossRefGoogle ScholarPubMed
Jackendoff, R. (2009). Parallels and nonparallels between language and music. Music Perception, 26(3), 195204.CrossRefGoogle Scholar
Jeon, H.-A., Anwander, A., & Friederici, A. D. (2014). Functional network mirrored in the prefrontal cortex, caudate nucleus, and thalamus: High-resolution functional imaging and structural connectivity. Journal of Neuroscience, 34(28), 92029212.CrossRefGoogle ScholarPubMed
Laland, K. N., Sterelny, K., Odling-Smee, J., Hoppitt, W., & Uller, T. (2011). Cause and effect in biology revisited: Is Mayr's proximate-ultimate dichotomy still useful? Science (New York, N.Y.), 334(6062), 15121516.CrossRefGoogle ScholarPubMed
Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior: The Hixon Symposium (pp. 112147). Wiley.Google Scholar
Leighton, G. M. (2017). Cooperative breeding influences the number and type of vocalizations in avian lineages. Proceedings of the Royal Society B: Biological Sciences, 284(1868), 20171508.CrossRefGoogle ScholarPubMed
Mehr, S. A., Kotler, J., Howard, R. M., Haig, D., & Krasnow, M. M. (2017). Genomic imprinting is implicated in the psychology of music. Psychological Science, 28(10), 14551467. https://doi.org/10.1177/0956797617711456.CrossRefGoogle ScholarPubMed
Merchant, H., & Honing, H. (2014). Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis. Frontiers in Neuroscience, 7, 274. https://doi.org/10.3389/fnins.2013.00274.CrossRefGoogle ScholarPubMed
Miller, G., Galanter, E., & Pibram, K. (1960). Plans and structure of behavior. Henry Holt and Company.CrossRefGoogle Scholar
Patel, A. D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology, 2, 142. https://doi.org/10.3389/fpsyg.2011.00142.CrossRefGoogle ScholarPubMed
Patel, A. D., & Iversen, J. R. (2014). The evolutionary neuroscience of musical beat perception: The Action Simulation for Auditory Prediction (ASAP) hypothesis. Frontiers in Systems Neuroscience, 8, 57.CrossRefGoogle ScholarPubMed
Perani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Rovelli, R., … Koelsch, S. (2010). Functional specializations for music processing in the human newborn brain. Proceedings of the National Academy of Sciences, 107(10), 47584763.CrossRefGoogle ScholarPubMed
Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. J. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11(4), 426428.CrossRefGoogle ScholarPubMed
Slevc, L. R., & Okada, B. M. (2015). Processing structure in language and music: A case for shared reliance on cognitive control. Psychonomic Bulletin & Review, 22(3), 637652.CrossRefGoogle ScholarPubMed
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift für Tierpsychologie, 20, 410433.CrossRefGoogle Scholar
Tobias, J. A., Sheard, C., Seddon, N., Meade, A., Cotton, A. J., & Nakagawa, S. (2016). Territoriality, social bonds, and the evolution of communal signaling in birds. Frontiers in Ecology and Evolution, 4, 74. https://doi.org/10.3389/fevo.2016.00074.CrossRefGoogle Scholar
Zatorre, R. J. (2013). Predispositions and plasticity in music and speech learning: Neural correlates and implications. Science (New York, N.Y.), 342(6158), 585589.CrossRefGoogle ScholarPubMed