Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-20T21:55:40.822Z Has data issue: false hasContentIssue false

Toward a unified hypothesis of cortico-striato-pallido-thalamus function?

Published online by Cambridge University Press:  19 May 2011

Neal R. Swerdlow*
Affiliation:
Department of Psychiatry, School of Medicine, University of California, San Diego, La Jolla, CA 92093
George F. Koob
Affiliation:
Division of Preclinical Neurosciences and Endocrinology, Scripps Clinic and Research Foundation, La Jolla, CA 92037
*
* Please address correspondence to first author.

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Author's Response
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, G. E. & Fuster, J. M. (1973) Effects of cooling prefrontal cortex on cell firing in the nucleus medialis dorsalis. Brain Research 61: 93105. [TS]CrossRefGoogle ScholarPubMed
Andeasen, N. C, Nasrallah, H. A., Dunn, V., Olson, S. C, Grove, W. M., Ehrhardt, J. A., Coffman, J. A. & Crossett, J. H. E. (1986) Structural abnormalities in the frontal system in schizophrenia. Archives of General Psychiatry 43: 136–47. [TS]CrossRefGoogle Scholar
Arikuni, T., Watanabe, K. & Kubota, K. (1987) The organization of the connection of the prefrontal cortex with the premotor area in macaque monkeys. Neuroscience Abstracts 12.1440. [TS]Google Scholar
Arnsten, A. F. T. & Goldman-Rakic, P. S. (1984) Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Research 306: 918. [TS]CrossRefGoogle Scholar
Baxter, L. R., Phelps, M. E., Maziotta, J. C, Schwartz, J. C, Gerner, R. M., Selin, G. E. & Sumida, R. M. (1985) Cerebral metabolic rates for glucose in mood disorders. Archives of General Psychiatry 42: 441–47. [rNRS]CrossRefGoogle ScholarPubMed
Bird, E. D., Barnes, J., Iversen, L. L., Spokes, E. G., Mackay, A. V. P. & Shepherd, M. (1977) Increased brain dopamine and reduced glutamic acid decarboxylase and choline acetyltransferase activity in schizophrenia and related psychoses. Lancet 3: 1157–59. [TS]CrossRefGoogle Scholar
Bracha, H. S. (1987) Asymmetric rotational (circling) behavior, a dopamine-related asymmetry: Preliminary findings in unmedicated and never-medicated schizophrenic patients. Biological Psychiatry 22: 9951003. [rNRS]CrossRefGoogle ScholarPubMed
Brown, R. M. & Goldman, P. S. (1977) Catecholamines in neocortex of rhesus monkeys: Regional distribution and ontogenetic development. Brain Research 124: 576–80. [TS]CrossRefGoogle Scholar
Brown, R. G. & Marsden, C. D. (1986) Visuospatial function in Parkinson's disease. Brain Research 109: 9871002. [TS]Google ScholarPubMed
Brozoski, T. J., Brown, R. M., Rosvolt, H. E. & Goldman, P. S. (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205: 929–32. [TS]CrossRefGoogle ScholarPubMed
Buchsbaum, M. S. & Haier, R. J. (1987) Functional brain imaging with positron emission tomography: Impact on schizophrenia research. Schizophrenia Bulletin 13: 115–32. [JCW]CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Wu, J. C, DeLisi, L. E., Holcomb, H. H., Hazlett, E., Cooper-Langston, K. & Kessler, R. (1987) Positron emission tomography studies of basal ganglia and somatosensory cortex. Neuroleptic drug effects: Differences between normal controls and schizophrenic patients. Biological Psychiatry 22: 479–94. [rNRS, JCW]CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Wu, J. C, Haier, R., Hazlett, E., Ball, R., Katz, M., Sokolski, K., Lagunas-Solar, M. & Langer, D. (1987b) Positron emission tomography assessment of effects of benzodiazepines on regional glucose metabolic rate in patients with anxiety disorder. Life Sciences 40: 23932400. [JCW]CrossRefGoogle ScholarPubMed
Buchsbaum, J. S., Nuechterlein, K. H., Haier, R. J., Wu, J., Sicotte, N., Hazlett, E., Asarnow, R., Potkin, S., Guich, S. & Lagunas-Solar, M. (in press) Glucose metabolic rate in normals and schizophrenics during th e continuous performance test assessed by positron emission tomography. [JCW]Google Scholar
Cotman, C. & Monaghan, D. T. (1987) Chemistry and anatomy of excitatory amino acid systems. In: Psychopharmacology: The third generation of progress, ed. Meltzer, H.. Raven Press. [JCW]Google Scholar
Damasio, A. R. & Van Hoesen, G. W. (1983) Emotional disturbances associated with focal lesions of the limbic frontal lobe. In: Neuropsychology of human emotion, ed. Heilman, K. & Satz, P.. Guilford Press. [rNRS]Google Scholar
Drewe, E. A. (1975) Go/no-go learning after frontal lobe lesions in humans. Cortex 11: 816. [TS]CrossRefGoogle ScholarPubMed
Early, T. S., Reiman, E. R., Raichle, M. E., & Spitznagel, E. L. (1987) Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proceeds at the National Academy of Sciences 84: 561–63. [rNRS]CrossRefGoogle ScholarPubMed
Ellison, D. W., Beal, M. F., Mazurek, M. F., Bird, E. D. & Martin, J. B. (1986) A postmortem study of amino acid neurotransmitters in Alzheimer's disease. Annals of Neurology 20: 616–21. [rNRS, TS]CrossRefGoogle ScholarPubMed
Fallon, J. H. & Loughlin, A. E. (1987) Monoamine innervation of cerebral cortex and a theory of th e role of monoamines in cerebral cortex and basal ganglia. In: Cerebral cortex, vol. 6, ed. Jones, E. G., & Peters, A., Plenum. [TS]Google Scholar
Fonnum, F. (1987) Biochemistry, anatomy, and pharmacology of GABA neurons. In: Psychopharmacology: The third generation of progress, ed. Meitzer, H.. Raven Press. [JCW]Google Scholar
Fox, P. T, Miezin, F. M., Allman, J. M., Mintun, M. A., Van Essen, D. C. & Raichle, M. E. (1986) Retinotopic organization of human visual cortex using a PET analysis strategy that improves spatial resolution. Neuroscience 16th Annual Abstracts (No. 324.1). [JCW]Google Scholar
Fuster, J. M. (1980) The prefrontal cortex. Raven Press. [TS]Google Scholar
(1985) The prefrontal cortex and temporal integration. In: Cerebral cortex, vol. 4, ed. Peters, A. & Jones, E. G.. Plenum. [TS]Google Scholar
Glowinski, J., Tassin, J. P. & Thierry, A. M. (1984) The mesocortico-prefrontal dopaminergic neurons. Trends in Neuroscience 7: 415–18. [TS]CrossRefGoogle Scholar
Goldberg, G., Mayer, N. H. & Toglia, J. U. (1981) Medial frontal cortex infarction and the alien hand sign. Archives of Neurology 38: 683–86. [rNRS]CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Handbook of physiology, the nervous system, vol. 5. American Physiological Society. [TS]Google Scholar
Groves, P. M. (1983) A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement. Brain Research Reviews 5: 109–32. [rNRS]CrossRefGoogle Scholar
Gur, R. E., Resnick, S. M. & Alavi, A. (1987) Regional brain function in schizophrenia. Archives of General Psychiatry 44: 119–25. [rNRS]CrossRefGoogle ScholarPubMed
Haier, R. J., Siegel, B. V. Jr., Nuechterlein, K. H., Hazlett, E., Wu, J. C, Paek, J., Browning, H. L. & Buchsbaum, M. S. (1988) Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence 12: 199217. [JCW]CrossRefGoogle Scholar
Hendry, S. H. C, Schwark, H. D., Jones, E. G. & Yan, J. (1987) Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. Journal of Neuroscience 7: 1503–19. [TS]CrossRefGoogle ScholarPubMed
Hornykiewicz, O. (1963) Die topische localisation das verhalten von noradrenalin und dopamin (3-hydroxytyramin) in der substantia nigra des normalen und Parkinson-kranken menschen. Wiener Klinische Wochenschrift 57: 309–12. [rNRS]Google Scholar
Houser, C. R., Vaughn, J. E., Hendry, A. H. C, Jooes, E. G. & Peters, A. (1984) GABA neurons in the cortex. In: Cerebral cortex, vol. 2, ed. Jones, E. G. & Peters, A.. Plenum. [TS]Google Scholar
Jaskiw, G. E. & Weinberger, D. R. (1987) The prefrontal cortex-accumbens circuit: Who's in charge? Behavioral and Brain Sciences 10: 217–18. [TS]CrossRefGoogle Scholar
Koob, G. F., Simon, H., Herman, J. P. & Le Moal, M. (1984) Neuroleptic-like disruption of the conditioned active avoidance response requires destruction of both mesolimbic and nigrostriatal dopamine systems. Brain Research 303: 319–29. [rNRS]CrossRefGoogle ScholarPubMed
Kubota, K. (1978) Neuron activity in the dorsolateral prefrontal cortex of the monkey and initiation of behavior. In: Integrative control functions of the brain, ed. Ito, M., Tsukahara, N., Kubota, K. & Yagi, K.. Kodansha-Elsevier. [TS]Google Scholar
Kubota, K., Mikami, A. & Ghishi, T. (1987) GABA inhibition at the periarcuate cortex of the rhesus monkey and the visual discrimination reversal task with go/no-go performances. Neuroscience Abstracts 13: 1095. [TS]Google Scholar
Lees, A. J. & Smith, E. (1983) Cognitive deficits in the early stages of Parkinson's disease. Brain 106: 257–70. [TS]CrossRefGoogle ScholarPubMed
Levin, S. (1984) Frontal lobe dysfunctions in schizophrenia: II. Impairments of psychological brain functions. Journal of Psychiatric Research 18: 5772. [TS]CrossRefGoogle ScholarPubMed
Lewis, D. A., Campbell, M. J., Foote, S. L., Goldstein, M. & Morrison, J. H. (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. Journal of Neuroscience 7: 279–90. [TS]CrossRefGoogle ScholarPubMed
Lloyd, K. G., Thuret, F. & Pile, A. (1986) GABA and the mechanism of action of antidepressant drugs. In: GABA and mood disorders: Experimental and clinical research, ed. Bartholini, G., Lloyd, K. G. & Morselli, P. L.. Raven Press. [TS]Google Scholar
Matsui, T. & Hirano, A. (1978) An atlas of the human brain for computerized tomography. Igaku-Shoin. [JCW]Google Scholar
Maunsell, J. H. R. & Newsome, W. T. (1987) Visual processing in monkey extrastriate cortex. Annual Review of Neuroscience 10: 363401. [TS]CrossRefGoogle ScholarPubMed
Morihisa, J. M., Duffy, F. H. & Wyatt, R. J. (1983) Brain electrical activity mapping in schizophrenic patients. Archives of General Psychiatry 40: 719–28. [TS]CrossRefGoogle ScholarPubMed
Morrison, J. H., Foote, S. L., O'Connor, D. & Bloom, F. E. (1982) Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: Dopamine-beta-hydroxylase immunochemistry. Brain Research Bulletin 9: 309–19. [TS]CrossRefGoogle Scholar
Muller, H. E. (1985) Prefrontal cortex dysfunction as a common factor in psychosis. Ada Psychiatry Scandinavica 71: 431–40. [TS]CrossRefGoogle ScholarPubMed
Musch, B. (1986) Antidepressant activity of fengabine (SL 79229): A critical overview of the present results in open clinical studies. In: GABA and mood disorders: Experimental and clinical research, ed. Bartholini, G., Lloyd, K. G. & Morselli, P. L.. Raven Press. [rNRS, TS]Google Scholar
Nauta, W. J. H., Smith, G. P., Domesick, V. B. & Faull, R. L. M. (1978) Efferent connections and nigral afferents of the nucleus accumbens septi n i the rat. Neuroscience 3: 385401. [rNRS]CrossRefGoogle Scholar
Nishino, H., Ono, T., Muramoto, K., Fukuda, M. & Sasaki, K. (1987) Neuronal activity in the ventral tegmentum area (VTA) during motivational bar press feeding in the monkey. Brain Research 413: 302–13. [TS]CrossRefGoogle ScholarPubMed
Penit-Soria, J., Audinat, E. & Crepel, F. (1987) Excitation of rat prefrontal cortical neurons by dopamine: An in vitro electrophysiological study. Brain Research 425: 263–74. [rNRS, TS]CrossRefGoogle Scholar
Perry, T. L., Young, V. W., Bergeron, C, Hansen, S. & Jones, K. (1987) Amino acids, glutathione, and glutathione transferase activity in the brain of patients with Alzheimer's disease. Annals of Neurology 21: 331–36. [TS]CrossRefGoogle ScholarPubMed
Porrino, L. J. & Goldman-Rakic, P. S. (1982) Brain stem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. Journal of Comparative Neurology 205: 6376. [TS]CrossRefGoogle ScholarPubMed
Pyeock, S. J., Kerwin, R. W. & Carter, D. J. (1980) Effect of 6-hydroxydopamine lesions of the medial prefrontal cortex on neurotransmitter systems in subcortical sites in the rat. Journal of Neurochemistry 34: 9199. [rNRS, TS]CrossRefGoogle Scholar
Reibaud, M., Blanc, C, Studler, J. M., Glowinski, J. & Tassin, J. P. (1984) Non-dopaminergic prefronto-cortical efferents medulate DI receptors in the nucleus accumbens. Brain Research 305: 4350. [TS]CrossRefGoogle Scholar
Roberts, E. (1972) An hypothesis suggesting that there is a defect in the GABA system in schizophrenia. Neuroscience Research Program Bulletin 10: 468–83. [TS]Google Scholar
Robinson, T. E. (1984) Behavioral sensitization: Characterization of enduring changes in rotational behavior produced by intermittent injections of amphetamine in male and female rats. Psychopharmacology 84: 466–75. [rNRS]CrossRefGoogle ScholarPubMed
Samuelian, J. C, Dufour, H., Thermoz, P., Thevenet, C. & Tatossian, A. (1986) Observations on the therapeutic activity of fengabine (SL 79229) in mood disorders. In: GABA and mood disorders: Experimental and clinical research, ed. Bartholini, G., Lloyd, K. G. & Morselli, P. L.. Raven Press. [TS]Google Scholar
Sawaguchi, T., Matsumura, M. & Kubota, K. (1986a) Dopamine modulates neuronal activities related to motor performance in the monkey prefrontal cortex. Brain Research 371: 404–8. [rNRS, TS]CrossRefGoogle ScholarPubMed
(1986b) GABA-ergic inhibition upon activities related to a visual reaction time task in the monkey prefrontal cortex. Journal of Physiological Society of Japan 48: 267. [TS]Google Scholar
Sawaguchi, T. (1987) Catecholamine sensitivities of neurons related to a visual reaction time task in the monkey prefrontal cortex. Journal of Neurophysiology 58: 1100–22. [TS]CrossRefGoogle ScholarPubMed
(1988) Dopamine enhances the neuronal activity of spatial short-term memory task in the primate prefrontal cortex. Neuroscience Research 5: 465–73. [TS]CrossRefGoogle Scholar
Sawaguchi, T., Matsumura, M. & Kubota, K. (1989) Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys. Experimental Brain Research 31: 193–98. [TS]Google Scholar
Schultz, W. (1987) The role of the primate nigrostriatal dopamine system in the initiation and conduction of behavioral acts as derived from single cell recordings and MPTP lesion effects. In: Neurotransmitter interactions in the basal ganglia, ed. Sandier, M.. Raven Press. [rNRS]Google Scholar
Seeinan, P., Ulpian, C, Bergeron, C, Riederer, P., Jellinger, K., Gabriel, E., Reynolds, G. & Tourtellotte, W. (1984) Bimodal distribution of dopamine receptor densities in brain of schizophrenics. Science 225: 728–31. [rNRS]CrossRefGoogle Scholar
SokolofF, L. (1977) Relation between physiological function and energy metabolism in the central nervous system. Journal of Neurochemistry 29: 1326. [JCW]CrossRefGoogle ScholarPubMed
SokolofF, L. (1986) Cerebral circulation, energy metabolism, and protein synthesis: General characteristics and principles of measurement. In: Positron emission tomography and autoradiography: Principles and applications for the brain and heart, ed. Phelps, M., Mazziotta, J., & Schelbert, H.. Raven Press. [JCW]Google Scholar
Stevens, J. R. (1973) Schizophrenia and the brain. Archives of General Psychiatry 29: 177–89. [JCW]CrossRefGoogle Scholar
Swanson, L. W. (1982) The projections of th e ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Research Bulletin 321–53. [rNRS]CrossRefGoogle Scholar
Swanson, L. W. & Cowan, W. M. (1975) A note on the connections and development of the nucleus accumbens. Brain Research 92: 324–30. [rNRS]CrossRefGoogle ScholarPubMed
Swerdlow, N., Braff, D., Geyer, M. & Koob, G. (1986) Central dopamine hyperactivity in rats mimics abnormal acoustic startle response in schizophrenics. Biological Psychiatry 21: 2333. [rNRS]CrossRefGoogle ScholarPubMed
Swerdlow, N. R. & Koob, G. F. (1987a) Dopamine, schizophrenia, mania, and depression: Toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behavioral and Brain Sciences 10: 197245. [rNRS]CrossRefGoogle Scholar
(1987b) Lesions of the dorsomedial nucleus of the thalamus, medial prefrontal cortex and pedunculopontine nucleus: Effects on locomotor activity mediated by nucleus accumbens - ventral pallidal circuitry. Brain Research 412: 233–43. [rNRS]CrossRefGoogle Scholar
Tassin, J. P. (1987) Dopamine and mental illness: And what about the mesocortical dopamine system? Behavioral and Brain Sciences 10: 224–25. [rNRS, TS]CrossRefGoogle Scholar
Taylor, A. E., Saint-Cyr, J. A. & Lang, A. E. (1986) Frontal dysfunction in Parkinson's disease: The cortical focus of neostriatal outflow. Brain 109: 845–83. [TS]CrossRefGoogle ScholarPubMed
Taylor, M. A. & Abrams, R. (1984) Cognitive impairment in schizophrenia. American Journal of Psychiatry 141: 196201. [TS]Google ScholarPubMed
Torrey, E. F. (1980) Neurological abnormalities in schizophrenic patients. Biological Psychiatry 15: 381–88. [rNRS]Google ScholarPubMed
Watanabe, M. (1986) Prefrontal unit activity during delayed conditional go/no-go discrimination in the monkey. II. Relation to go and no-go responses. Brain Research 382: 1527. [TS]CrossRefGoogle ScholarPubMed
Wainberger, D. R., Berman, K. F. & Chase, T. N. (1986) Dopamine and human cognition: rCBF studies in Parkinson's disease. Neuroscience Abstracts 12: 1142. [TS]Google Scholar
Weinberger, D. R., Berman, K. F. & Zee, R. F. (1986) Physiological dysfunction of dorsolateral prefrontal cortex of schizophrenia. I: Regional cerebral blood flow evidence. Archives of General Psychiatry 43: 114–24. [TS]CrossRefGoogle ScholarPubMed
Wong, D., Wagner, H., Tune, L., Dannals, R., Pearlson, G., Links, J., Tamminga, C, Broussolle, E., Ravert, H., Wilson, A., Toung, J., Malat, J., Williams, J., O'Tuama, L., Snyder, S., Kuhar, M. & Gjedde, A. (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234: 1558–63. [rNRS]CrossRefGoogle ScholarPubMed