Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-04T21:31:09.838Z Has data issue: false hasContentIssue false

Testing key predictions of the associative account of mirror neurons in humans using multivariate pattern analysis

Published online by Cambridge University Press:  29 April 2014

Nikolaas N. Oosterhof
Affiliation:
Centro Interdipartimentale Mente/Cervello (CIMeC), University of Trento, 38068 Rovereto, Trento, Italy. [email protected]://www.unitn.it/en/cimec/22589/nikolaas-oosterhof Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755 Department of Psychology, Harvard University, Cambridge, MA 02138
Alison J. Wiggett
Affiliation:
Wales Institute of Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, Gwynne, LL57 2AS, United Kingdom. [email protected]@bangor.ac.ukhttp://www.bangor.ac.uk/psychology/people/profiles/alison_wiggett.php.en
Emily S. Cross
Affiliation:
Wales Institute of Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, Gwynne, LL57 2AS, United Kingdom. [email protected]@bangor.ac.ukhttp://www.bangor.ac.uk/psychology/people/profiles/alison_wiggett.php.en Behavioural Science Institute and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands. www.soba-lab.com

Abstract

Cook et al. overstate the evidence supporting their associative account of mirror neurons in humans: most studies do not address a key property, action-specificity that generalizes across the visual and motor domains. Multivariate pattern analysis (MVPA) of neuroimaging data can address this concern, and we illustrate how MVPA can be used to test key predictions of their account.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Catmur, C., Walsh, V. & Heyes, C. M. (2007) Sensorimotor learning configures the human mirror system. Current Biology 17(17):1527–31.CrossRefGoogle ScholarPubMed
Edelman, S., Grill-Spector, K., Kushnir, T. & Malach, R. (1998) Toward direct visualization of the internal shape representation space by fMRI. Psychobiology 26:309–21.CrossRefGoogle Scholar
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L. & Pietrini, P. (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539):2425–30.CrossRefGoogle ScholarPubMed
Haynes, J. D. & Rees, G. (2005) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nature Neuroscience 8:686–91.CrossRefGoogle ScholarPubMed
Kriegeskorte, N. (2009) Relating population-code representations between man, monkey, and computational models. Frontiers in Neuroscience 3:363–73.CrossRefGoogle ScholarPubMed
Kriegeskorte, N., Goebel, R. & Bandettini, P. (2006) Information-based functional brain mapping. Proceedings of the National Academy of Sciences USA 103:3863–68.CrossRefGoogle ScholarPubMed
Kriegeskorte, N., Mur, M. & Bandettini, P. (2008) Representational similarity analysis – Connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience 2:3863–68.Google Scholar
Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M. & Fried, I. (2010) Single-neuron responses in humans during execution and observation of actions. Current Biology 20(8):750–56.CrossRefGoogle ScholarPubMed
Norman, K., Polyn, S., Detre, G. & Haxby, J. V. (2006) Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences 10:424–30.CrossRefGoogle ScholarPubMed
Oosterhof, N. N., Tipper, S. P. & Downing, P. E. (2012) Viewpoint (In)dependence of action representations: An MVPA study. Journal of Cognitive Neuroscience 24:975–89.CrossRefGoogle ScholarPubMed
Oosterhof, N. N., Tipper, S. P. & Downing, P. E. (2013) Cross-modal and action-specific: Neuroimaging the human mirror neuron system. Trends in Cognitive Sciences 17:211318.CrossRefGoogle Scholar
Oosterhof, N. N., Wiestler, T., Downing, P. E. & Diedrichsen, J. (2011) A comparison of volume-based and surface-based multi-voxel pattern analysis. Neuroimage 56:593600.CrossRefGoogle ScholarPubMed
Oosterhof, N. N., Wiggett, A. J., Diedrichsen, J., Tipper, S. P. & Downing, P. E. (2010) Surface-based information mapping reveals crossmodal vision-action representations in human parietal and occipitotemporal cortex. Journal of Neurophysiology 104:1077–89.CrossRefGoogle ScholarPubMed
Peelen, M. V. & Downing, P. E. (2007) Using multi-voxel pattern analysis of fMRI data to interpret overlapping functional activations. Trends in Cognitive Sciences 11:4.CrossRefGoogle ScholarPubMed
Press, C., Gillmeister, H. & Heyes, C. (2007) Sensorimotor experience enhances automatic imitation of robotic action. Proceedings of the Royal Society of London B: Biological Sciences 274(1625):2509–14.Google ScholarPubMed
Sereno, M. I. & Tootell, R. B. (2005) From monkeys to humans: What do we now know about brain homologies? Current Opinion in Neurobiology 15:135–44.CrossRefGoogle ScholarPubMed