Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T07:35:30.698Z Has data issue: false hasContentIssue false

The scope of neuroethology

Published online by Cambridge University Press:  04 February 2010

Graham Hoyle
Affiliation:
Institute of Neuroscience, University of Oregon, Eugene, Oreg. 97403

Abstract

Neuroethology, an interdisciplinary subdivision of neuroscience, has emerged in recent years. Since 1976 there has been a regular session under this heading at the annual meeting of the Society for Neuroscience. In 1980 two introductory texts in English were published on the subject (Ewert 1980; Guthrie 1980), and a third (Camhi 1984) was published recently. There is widespread interest in neural mechanisms underlying behavior, but they encompass such a vast array of often unrelated topics that proponents do not share common goals. This article describes the emergence of ethology as a discipline, pointing out that its practitioners were successful because they confined their research to stereotyped, complex, nonlearned, innate behavioral acts. A limited number of profoundly significant principles emerged. Each of these is redefined. The major concepts of earlier ethology were embodied in a simple hydraulic model used by Konrad Lorenz in 1949 (Lorenz 1950). It is pointed out that this model implies the existence of common neurophysiological mechanisms and neuronal circuitry. This model has now been made obsolete by neurophysiological progress, but with appropriate modifications an updated version may still be useful in focusing attention on possible principles. The initial aim of neuroethology should be to examine the neurophysiological events in a variety of behaviors, exhibited by diverse animals from different phyla, which meet the criteria of innate behavioral acts. The behaviors should be sufficiently complex to interest ethologists, yet they should be addressable with neurophysiological methods down to the cellular level. In the case of vertebrates this may mean working with brain slices as well as whole animals, but for some invertebrates recording should be possible in the nearly intact animal during execution of the behavior. The work will be exacting and very difficult, and it is not likely to get done at all unless neuroethologists recognize that they should both train and discipline themselves and restrict their attention to welldefined goals.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amari, S. & Arbib, M. A., eds. (1982) Competition and cooperation in neuralnets. Lecture Notes in Biomathematics 45. Springer-Verlag. [MAA]Google Scholar
Arbib, M. A. (1972) The metaphorical brain: An introduction to cybernetics as artificial intelligence and brain theory. Wiley Interscience. [MAA]Google Scholar
Arbib, M. A. (1981) Perceptual structures and disturbed motor control. In: Handbook of physiology, Section on neurophysiology. Vol. 2: Motor control, ed. Brooks, V. B.. American Physiological Society. [MAA]Google Scholar
Angel, R. W. (1976) Efferenee copy in the control of movements. Neurology 26: 1164–68. [RDF]CrossRefGoogle Scholar
Baerends, G. P. (1976) The functional organization of behavior. Animal Behaviour 24: 726–38. [RDF, rCH]CrossRefGoogle Scholar
Ballard, D. & Brown, C. M. (1982) Computer vision. Prentice-Hall. [MAA]Google Scholar
Barlow, G. W. (1977) Modal action patterns. In: How animals communicatex, ed. Sebeok, T. A.. University of Indiana Press. [taGH]Google Scholar
Barlow, H. B. & Levick, W. R. (1965) The mechanism of directionally selective units in rabbit's retina. Journal of Physiology, London 178: 477504. [CHFR]Google Scholar
Barnett, S. A. (1981) Modern ethology: The science of animal behavior. Oxford University Press. [taGH]Google Scholar
Bässler, U. (1983) Neural basis of elementary behavior in stick insects. Springer-Verlag. [UB]Google Scholar
Bastock, M., Morris, D. & Moynihan, M. (1953) Some comments on conflict and thwarting in animals. Behaviour 6: 6684. [RAH]Google Scholar
Bateson, P. (1983) Genes, environment and the development of behaviour. In: Animal behaviour, vol. 3:Genes, development and learning, ed. Halliday, T. R. & Slater, P. J. B.. Blackwell. [PB]Google Scholar
Bayliss, L. E. (1960) Principles of general physiology. Longmans, Green & Co. [DMG]Google Scholar
Baylor, D. A. & Hodgkin, A. L. (1973) Detection and resolution of visual stimuli by turtle photoreceptors. Journal of Physiology 234: 163–98. [SG]Google Scholar
Baylor, D. A. & Hodgkin, A. L. (1974) Changes in time scale sensitivity in turtle photoreceptors. Journal of Physiology 242: 729–58. [SG]Google Scholar
Baylor, D. A., Hodgkin, A. L. & Lamb, T. D. (1974a) The electricalresponses of turtle cones to flashes and steps of light. Journal ofPhysiology 242: 685727. [SG]Google Scholar
Baylor, D. A., Hodgkin, A. L. & Lamb, T. D. (1974b) Reconstruction of the electrical responses of turtle cones to flashes and steps of light. Journal of Physiology 242: 759–91. [SG]CrossRefGoogle ScholarPubMed
Bell, C. C. (1981) An efference copy which is modified by reafferent input. Science 214: 450–53. [RDF, rCH]Google Scholar
Bell, C. C. (1982) Properties of modifiable efferent cells in an electric fish. Journal of Neurophysiohgy 47: 1043–56. [DJI]CrossRefGoogle Scholar
Bent, S. A. & Chapple, W. D. (1977) Simplification of swimmeret musculature and innervation in hermit crab, Pagurus pollicarpus, in comparison to Macrurans. Journal of Comparative Physiology 118: 6173. [FC]CrossRefGoogle Scholar
Bentley, D. R. (1971) Genetic control of an insect neuronal network. Science 174: 1139–41. [taGH]Google Scholar
Bentley, D. R. & Hoy, R. R. (1972) Genetic control of the neuronal network generating cricket song patterns. Animal Behaviour 20: 478–92. [taGH, DLM]Google Scholar
Bentley, D. R. & Hoy, R. R. (1974) The neurobiology of cricket song. Scientific American 231: 3442. [rGH]CrossRefGoogle ScholarPubMed
Black, H. S. (1934) Stabilized feedback amplifiers. Bell Systems Technical Journal 13: 118. [DMG]Google Scholar
Block, C. H., Siegel, A. & Edinger, H. (1980) Effects of amygdaloid stimulation upon trigeminal sensory fields of the lip that are established during hypothalamically elicited quiet biting attack in the cat. Brain Research 197: 3955. [HDS]CrossRefGoogle ScholarPubMed
Boeckh, J., & Ernst, K. D. (1983) Olfactory food and mate recognition. In: Neuroethology and behavioral physiology, ed. Huber, F. & Markl, H.. Springer-Verlag. [JE]Google Scholar
Breen, C. A. & Atwood, H. L. (1983) Octapamine – A neurohormone with presynaptic activity-dependent effects at crayfish neuromuscular junctions. Nature 303: 716–18. [ETW]Google Scholar
Brown, Boveri & Cie, . (19821983) The OMS-vision system. Technical information sheets DNG334380E and 333381D. [DMG]Google Scholar
Brown, J. L. & Hunsperger, R. W. (1963) Neuroethology and the motivation of agonistic behaviour. Animal Behaviour 11(4): 439–48. [HDS]CrossRefGoogle Scholar
Bullock, T. H. (1977) Introduction to nervous systems. W. H. Freeman. [AM]Google Scholar
Bullock, T. H. (1983) Implications for neuroethology from comparative neurophysiology. In: Advances in vertebrate neuroethology, ed. Ewert, J. -P., Capranica, R. R. & Ingle, D. J.. Plenum Press. [J-PE]Google Scholar
Bullock, T. H. (1983) Neurobiological roots and neuroethological sprouts. In: Neuroethology and behavioral physiology, ed. Huber, F. & Markl, H.. Springer-Verlag. [THB]Google Scholar
Burrows, M. (1980) The control of sets of motoneurones by local interneurones in the locust. Journal of Physiology 298: 213–23. [CHFR]Google Scholar
Burrows, M. & Hoyle, G. (1973) Neural mechanisms underlying behavior in the locust Schistoccrca gregaria. 3. Topography of limb motor neurons in the metathoracic ganglion. Journal of Neurobiology 4: 167–86. [taGH]Google Scholar
Camhi, J. M. (1984) Neuroethology. Sinauer. [tarGH]Google Scholar
Carefoot, T. H. (1967) Growth and nutrition of three species of opisthobranch molluscs. Comparative Biochemistry and Physiology 21: 627–52. [IK]CrossRefGoogle ScholarPubMed
Carew, T. J., Abrams, T. W., Hawkins, R. D. & Kandel, E. R. (1983) A test of Hebb's postulate at identified synapses which mediate classical conditioning in Aplysia. Neuroscience Abstracts 9(1):168. [RDF]Google Scholar
Carew, T. J., Hawkins, R. D. & Kandel, E. R. (1983) Differential classical conditioning of a defensive withdrawal reflex in Aplysia californica. Science 219: 397400. [SG]CrossRefGoogle ScholarPubMed
Carlson, J. (1977) The imaginal ccdysis of the cricket (Teleogryllus occanicus). 1. Organization of motor programs and roles of central and sensory control. 2. The roles of identified motor units. Journal of Comparative Physiology 115: 299318, 319–336. [CHFR]Google Scholar
Carpenter, G. A. & Grossberg, S. (1981) Adaptation and transmitter gating in vertebrate photoreceptors. Journal of Theoretical Neurobiology 1: 142. [SG]Google Scholar
Carpenter, G. A. & Grossberg, S. (1983a) Dynamic models of neural systems: Propagated signals, photoreceptor transduction, and circadian rhythms. In: Oscillations in mathematical biology, ed. Hodgson, J. P. E.. Springer-Verlag. [SG]Google Scholar
Carpenter, G. A. & Grossberg, S. (1983b) A neural theory of circadian rhythms: The gated pacemaker. Biological Cybernetics 48: 3559. [SG]CrossRefGoogle Scholar
Carpenter, G. A. & Grossberg, S. (1984a) A neural theory of circadian rhythms: Aschoffs rule in diurnal and nocturnal mammals. American Journal of Physiology. In press. [SG]Google Scholar
Carpenter, G. A. & Grossberg, S. (1984b) A neural theory of circadian rhythms: Split rhythms and long-term after-effects. Submitted for publication. [SG]Google Scholar
Cattaert, D. & Clarac, F. (1983) Influence of walking on swimmeret beating in the lobster Homarus gammarus. Journal of Neurobiology 14: 421–39. [FC]Google Scholar
Coghill, G. E. (1929) Anatomy and the problem of behaviour. Cambridge University Press. [taGH]Google Scholar
Cohen, J. L., Weiss, K. R. & Kupfermann, I. (1978) Journal of Neurophysiology 41: 157–80. [IK]CrossRefGoogle Scholar
Comroe, J. H. Jr, (1977) Retrospectroscope: Insights into medical discovery. Von Gehr Press. [THB]Google Scholar
Comroe, J. H. Jr, & Dripps, R. D. (1976) Scientific basis for the support of biomedical science. Science 192: 105–11. [THB]Google Scholar
Craig, W. (1918) Appetites and aversions as constituents of instincts. Biological Bulletin 34: 91107 [taGH]CrossRefGoogle Scholar
Creuzfeldt, O. D., Abbott, B. C, Fowler, W. M. & Pearson, C. M. (1963) Muscle membrane potentials in episodic adynamia. Electroencephalography and Clinical Neurophysiology 15: 508–19. [taGH]CrossRefGoogle Scholar
Croll, R. P. & Chase, R. (1977) A long-term memory for food odors in the land snail, Achatina fullica. Behavioral Biology 19: 261–68. [ETW]Google Scholar
Davis, W. J. (1968) Quantitative analysis of swimmeret beating in the lobster. Journal of Experimental Biology 48: 643–62. [FC]CrossRefGoogle Scholar
Delcomyn, F. (1980) Neural basis of rhythmic behavior in animals. Science 210: 492–98. [taGH]Google Scholar
Deutsch, J. A. (1960) The structural basis of behavior. Cambridge University Press. [DLM]Google Scholar
Dewsbury, D. A. (1978) What is (was?) the “fixed action pattern”? Animal Behaviour 26: 310–11. [DLM]Google Scholar
Dismukes, R. K. (1979) New concepts of molecular communication among neurons. Behavioral and Brain Sciences 2: 409–48. [taGH]Google Scholar
Dorsett, D. A., Willows, A. O. D. & Hoyle, G. (1973) The neuronal basis of behavior in Tritonia. 4. The central origin of a fixed action pattern demonstrated in the isolated brain. Journal of Neurobiology 4: 287300. [taGH]Google Scholar
Drummond, H. (1981) The nature and description of behavior patterns. In: Perspectives in ethology, ed. Bateson, P. P. G. & Klopfer, P. H., vol. 4. Plenum. [WMS]Google Scholar
Ellis, P. E. & Hoyle, G. (1954) A physiological interpretation of the marching of hoppers of the African migratory locust (Locusta migratoria migratorioides R. and F.). Journal of Experimental Biology 31: 271–79. [taGH]Google Scholar
Elsner, N. & Popov, A. V. (1978) Neuroethology of acoustic communication. Advances in Insect Physiology 13: 229355. [tarGH]Google Scholar
Erber, J. (1983) Search for neural correlates of learning in bees. In: Behavioral physiology and neuroethology: Roots and growing points, ed. Huber, F. & Markl, H.. Springer-Verlag. [GE.taGH]Google Scholar
Evarts, E. V. (1976) Neuronal representation of acquired movement patterns in primates. In: Simpler nervous networks, ed. Fentress, J. C.. Sinauer. [DMG]Google Scholar
Ewert, J -P. (1980) Neuroethology, trans. Transemantics, Inc. Springer-Verlag. [MAA SG, taGH]Google Scholar
Ewert, J -P. (1984) Concepts in vertebrate neuroethology. In: Animal behaviour. In press. [J-PE]Google Scholar
Ewert, J -P., Capranica, R. R. & Ingle, D. J., eds. (1983) Advances in vertebrate neuroethology. Plenum. [GE, DMG, tarGH, DJI]CrossRefGoogle Scholar
Ewing, A. & Hoyle, G. (1965) Neuronal mechanisms underlying control of sound production in a cricket: Acheta domesticus. Journal of Experimental Biology 43: 139–53. [rGH]Google Scholar
Ewing, A. & Manning, A. (1966) Some aspects of the efferent control of walking in three cockroach species. Journal of Insect Physiology 12: 1115–18. [taGH]Google Scholar
Fentress, J. C. (1980) How can behavior be studied from a neuroethological perspective? In: Information processing in the nervous system, ed. Pinsker, Harold M. & Willis, William D. Jr, Raven Press. [taGH]Google Scholar
Fentress, J. C. (1981) Sensorimotor development. In: Development of perception, ed. Aslin, R. N., Alberts, J. R. & Petersen, M. R.. Academic Press. [rGH]Google Scholar
Fernald, R. D. (1983) Neural basis of visual pattern recognition in fish. In: Advances in vertebrate neuroethology, ed. Ewert, J-P., Capranica, R. R. & Ingle, D. J.. Plenum. [taGH]Google Scholar
Fernald, R. D. (1984) Vision and behavior in African cichlid fish. American Scientist 72: 5865. [RDF]Google Scholar
Finely, J., Ireton, D., Schleidt, W. M. & Thompson, T. A. (1983) A new look at the features of mallard courtship displays. Animal Behaviour 31: 348–54. [WMS]Google Scholar
Flynn, J. (1972) Patterning mechanisms, patterned reflexes, and attackbehavior in cats. Nebraska Symposium on Motivation 20: 125–54. [DJ1]Google Scholar
Flynn, J. P., Vanegas, H., Foote, W. & Edwards, S. (1970) Neural mechanisms involved in a cat's attack on a rat. In: The neural control of behavior, ed. Whalen, R. E., Thompson, R. F., Verzcano, M. & Weinberger, N. M.. Academic Press. [HDS]Google Scholar
Forman, R. (1982) A new paradigm permits the analysis of neuronal mechanisms underlying learned leg position in insects. Doctoral dissertation, University of Oregon. [taGH]Google Scholar
Frisch, K. von (1967) The dance language and orientation of bees. Harvard University Press. [taGH]Google Scholar
Gallistel, C. R. (1980) The organization of action: A new synthesis. Erlbaum Associates. [taGH]Google Scholar
Gandelman, R. (1983) Gonadal hormones and sensory function. Neuroscienc and Biobehavioral Reviews 7: 117. [HDS]Google Scholar
Getting, P. A. (1976) Afferent neurons mediating escape swimming of the marine mollusc, Tritonia. Journal of Comparative Physiology 110: 271–86. [CHFR]Google Scholar
Getting, P. A. (1983) Mechanisms of pattern generation underlying swimming in Tritonk 3. Intrinsic and synaptic mechanisms for delayed excitation. Journal of Neurophysiology 49: 1036–50. [taGH]Google Scholar
Goodman, C. S. & Spitzer, N. C. (1979) Embryonic development of identified neurons: Differentiation from neuroblast to neurone. Nature 280: 208–14. [taGH]Google Scholar
Gottlieb, G., ed. (1973) Behavioral embryology. Academic Press. [HDS]Google Scholar
Gottlieb, G.ed. (1976) Neural and behavioral specificity. Academic Press. [HDS]Google Scholar
Gray, J. (1950) The role of peripheral sense organs during locomotion in the vertebrates. Symposia of the Society for Experimental Biology 4: 112–26. [taGH]Google Scholar
Grillner, S. (1981) Control of locomotion in bipeds, tetrapods and fish. In: Handbook of physiology, sect. 1, vol. II Motor control, ed. Brooks, V. B.American Physiological Society. [FC]Google Scholar
Grossberg, S. (1968) Some physiological and biochemical consequences of psychological postulates. Proceedings of the National Academy of Scienc 60: 758–65. [SG]Google Scholar
Grossberg, S. (1969a) On the production and release of chemical transmitters and related topics in cellular control. Journal of Theoretical Biology 22: 325–64. [SG]Google Scholar
Grossberg, S. (1969b) Some networks that can learn, remember, and reproduce any number of complicated space-time patterns. I. Journal of Mathematics and Mechanics 19: 5391. [SG]Google Scholar
Grossberg, S. (1971) On the dynamics of operant conditioning. Journal of Theoretical Biology 33: 225–55. [SG]Google Scholar
Grossberg, S. (1972) A neural theory of punishment and avoidance. 2. Quantitative theory. Mathematical Biosciences 15: 253–85. [SG]Google Scholar
Grossberg, S. (1975) A neural model of attention, reinforcement, and discrimination learning. International Review of Neurobiology 18: 263327. [SG]Google Scholar
Grossberg, S. (1982a) Studies of mind and brain: Neural principles of learning, perception, development, cognition, and motor control. Reidel Press. [SG]Google Scholar
Grossberg, S. (1982b) Processing of expected and unexpected events during conditioning and attention: A psychophysiological theory. Psychological Review 89: 529–72. [SG]Google Scholar
Grossberg, S. (1982c) A psychophysiological theory of reinforcement, drive, motivation, and attention. Journal of Theoretical Neurobiology 1: 286369. [SG]Google Scholar
Grossberg, S. (1983a) Some psychophysiological and pharmacological correlates of a developmental, cognitive, and motivational theory. In: Brain and information: Event related potentials ed. Karrer, R., Cohen, J. & Tueting, P.. New York Academy of Sciences. [SG]Google Scholar
Grossberg, S. & Kuperstein, M. (1984) Adaptive neural dynamics of the saccadic eye movement system and general principles of sensory-motor control. Submitted for publication. [SG]Google Scholar
Guthrie, D. M. (1980) Neuroethology. Blackwell. [taGH]Google Scholar
Hampson, S. & Kibler, D. (1983) A Boolean complete neural model ofadaptive behavior. Biological Cybernetics 49: 919. IrGH]Google Scholar
Hassenstein, B. (1983) Funktionsschaltbilder als Hilfsmittel zur Darstellung theoretischer Konzepte in der Verhaltensbiologie. Zoologische Jahrbücher-Abteilung Physiologie 87: 181–87. [WMS]Google Scholar
Hawkins, R. D., Abrams, T. W., Carew, T. J. & Kandel, E. R. (1983) A cellular mechanism of classical conditioning in Aplysia: Activity-dependent amplification of presynaptic facilitation. Science 219: 400–5 [SG ETW]Google Scholar
Hebb, D. O. (1949) The organization of behavior. Wiley. (Science Editions reprint, 1961). [JAS]Google Scholar
Heiligenberg, W. F. (1982) The jamming avoidance response in an electric fish. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P., Capranica, R., & Ingle, D. J.. Plenum. [DJI]Google Scholar
Heitler, W. J. (1974) The locust jump. Specialization of the metathoracic femoro-tibial joint. Journal of Comparative Physiology 89: 93104. [taGH]Google Scholar
Hinde, R. A. (1970) Animal behavior: A synthesis of ethology and comparative psychology, 2nd ed.McGraw-Hill. [PB, ETW]Google Scholar
Hinde, R. A. (1982) Ethology: Its nature and relations with other sciences. Oxford University Press. [RDF, DLM]Google Scholar
Hinton, G. E. & Anderson, J. A., eds. (1981) Parallel models of associative memory. Erlbaum Associates. [MAA]Google Scholar
Holst, E. v. (1939) Die relative Koordination als Phaenomen und als Methode zentralnervoeser Funktionsanalyse. Ergebnisse der Physiologie 42: 228306. [WMS]Google Scholar
Hoy, R. R. & Paul, R. C. (1973) Genetic control of song specificity in crickets. Science 180: 8283. [taGH]Google Scholar
Hoyle, G. (1953) “Slow” and “fast” nerve fibres in locusts. Nature 172: 165. [taGH]Google Scholar
Hoyle, G. (1954) Changes in the blood potassium concentration of the African migratory locust (Locusta migratoria migratorioides R. and F.) during food deprivation, and the effect on neuromuscular activity. Journal of Experimental Biology 31: 260–70. [taGH]Google Scholar
Hoyle, G. (1957) Nervous control of insect muscles. In: Recent advances in invertebrate physiology, ed. Scheer, B. T.. University of Oregon Press. [rCH]Google Scholar
Hoyle, G. (1964) Exploration of neuronal mechanisms underlying behavior in insects. In: Neural theory and modeling, ed. Reiss, R. F.. Stanford University Press. [tarGH, AM]Google Scholar
Hoyle, G. (1965) Neurophysiological studies on “learning” in headless insects. In: Physiology of the insect central nervous system, ed. Beament, J. W. & Treherne, J.. Academic Press. [rGH]Google Scholar
Hoyle, G. (1967) Specificity of muscle. In: Invertebrate nervous systems, ed. Wiersma, C. A. G.. University of Chicago Press. [DLM]Google Scholar
Hoyle, G. (1970) Cellular mechanisms underlying behavior – Neuroethology. Advances in Insect Physiology 7: 349444. [FD, J-PE, taGH]Google Scholar
Hoyle, G. (1974) A function for neurons (DUM) neurosecretory on skeletal muscle of insects. Journal of Experimental Zoology 189: 401–6. [taGH]Google Scholar
Hoyle, G. (1975) Identified neurons and the future of neuroethology. Journal of Experimental Zoology 194: 5174. [FC, FD, taGH]Google Scholar
Hoyle, G. (1976) Approaches to understanding the neurophysiological bases of behavior. In: Simpler networks and behavior, ed. Fentress, J.. Sinauer. [FC, taGH, IK, DLM, AM]Google Scholar
Hoyle, G. (1977) Kees Wiersma: An appreciation. In: Identified neurons and behavior of arthropods, ed. Hoyle, G.. Plenum. [JPE, DLM]Google Scholar
Hoyle, G. (1980) Learning, using natural reinforcements, in insect preparations that permit cellular neuronal analysis. Journal of Neurobiology 11: 323–54. [FC, taGH]CrossRefGoogle ScholarPubMed
Hoyle, G. (1983) Forms of modulatable tension in skeletal muscles. Comparative Biochemistry and Physiology 76A: 203–10. [taGH]Google Scholar
Hoyle, G. (1984) Neuromuscular transmission in a primitive insect: Modulation byoctopamine, and catch-like tension. Comparative Biochemistry and Physiology 77c:219–32. [rGH]Google Scholar
Hoyle, G. ed., (1977) Identified neurons and behavior of arthropods. Plenum. [FC]Google Scholar
Hoyle, G. ed., (1977) Identified neurons and behavior of arthropods, preface. Plenum. [J-PE]Google Scholar
Hubel, D. H. & Wiesel, T. N. (1974) Sequence regularity and geometry of orientation columns in the monkey striate cortex. Journal of Comparative Neurology 158: 267–94. [CHFR]Google Scholar
Huber, F. (1983) Implications of insect neuroethology for studies on vertebrates. In: Advances in vertebrate neuroethology, ed. Ewert, J. P., Capranica, R. R. & Ingle, D. J.. Plenum. [GE]Google Scholar
Huber, F. (1983) Neural correlates of orthopteran and cicada phonotaxis. In: Neuroethology and behavioral physiology, ed. Huber, F. & Markl, H.. Springer-Verlag. [JE]Google Scholar
Huber, F. & Markl, H., eds. (1983) Behavioral physiology and neuroethology: Roots and growing points. Springer-Verlag [GE]Google Scholar
Hughes, T. D. (1980) The imaginal ecdysis of the desert locust, Schistocerca gregaria. 1. A description of the behaviour. 2. Motor activity underlying the pre-emergence and emergence behaviour. 3. Motor activity underlying the expansional and post-expansional behaviour. 4. The role of the gut. Physiological Entomology 5: 4754, 55–71, 141–52, 153–64. [CHFR]Google Scholar
Inselman-Temkin, B. R. & Flynn, J. P. (1973) Sex-dependent effects of gonadal and gonadotropic hormones on centrally elicited attack in cats. Brain Research 60: 393410. [HDS]Google Scholar
Jacklett, J. W. (1969) Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science. 164: 562–63. [SG]Google Scholar
Jahanparwar, B. (1972) Behavioral and electrophysiological studies on chemoreception in Aplysia. American Zoologist 12: 529–37. [IK]Google Scholar
Kandel, E. (1976) The cellular basis of behavior. Freeman. [JD, taGH, JZY]Google Scholar
Kandel, E. (1979) Behavioral biology of Aplysia. Freeman. [MAA, JD, taGH, AM, ETW]Google Scholar
Kandel, E. & Schwartz, J. H. (1982) Molecular biology of learning: Modulation of transmitter release. Science 218: 433–42. [JD, taGH]Google Scholar
Kennedy, J. S. (1954) Is modem ethology' objective? British Journal of Animal Behaviour 2: 1219. [taGH]Google Scholar
Klopf, H. (1982) The hedonistic neuron. Hemisphere. [rCH]Google Scholar
Konishi, M. (1983) Localization of acoustic signals in the owl. In: Advances in vertebrate neurocthology, ed. Ewert, J.-P., Capranica, R. R. & Ingle, D. J., Plenum. [taGH]Google Scholar
Kriegstein, A. R. (1977) Development of the nervous system of Aplysia californica. Proceedings of the National Academy of Sciences 74: 375–78. ]ETW]Google Scholar
Kupfermann, I. (1974) Feeding behavior in Aplysia: A simple system for the study of motivation. Behavioral Biology 10: 126, Abstract No. 3169. [IK]Google Scholar
Kupfermann, I., Cohen, J. L., Mandelbaum, D. E., Schonberg, M., Susswein, A. J. & Weiss, K. R. (1979) Functional role of serotonergic neuromodulation in Aplysia. Federation Proceedings, American Society of Experimental Biology 38: 2095–102. [FC]Google Scholar
Kupfermann, L. & Weiss, K. (1978) The command neuron concept. Behavioral and Brain Sciences 1: 339. [J-PE, taGH]Google Scholar
Lara, R. & Arbib, M. A., eds. (1983) Proceedings of the second workshop on visuomotor coordination in frog and toad: Models and experiments. Technical Report 83–19, Department of Computer and Information Science. University of Massachusetts at Amherst. [MAA]Google Scholar
Lashley, K. S. (1929) Brain mechanisms and intelligence. University of Chicago Press. (Dover reprint, 1963). [JAS]Google Scholar
Lewis, W. E., Mishkin, M., Bragin, E., Brown, R. M., Pert, C. B. & Pert, A. (1981) Opiate receptor gradients in monkey cerebral cortex: Correspondence with sensory processing hierarchies. Science 211: 1166–69. [HDS]Google Scholar
Lennard, I. R., Getting, P. A. & Hume, R. I. (1980) Central pattern generator mediating swimming in Tritonia. 2. Initiation, maintenance, and termination. Journal of Neurophysiology 44: 165–73. [CHFR]Google Scholar
Lindberg, D. & Elsner, N. (1977) Sensory influence upon grasshopper stridulation. Natunvissenschaften 64: 342. [taGH]Google Scholar
Leonard, J. L., & Lukowiak, K. (1982) An ethologieal analysis of mating in Navanax inermis (Mollusca: Opisthobranchia). Society for Neuroscience Abstracts 8: 607. [JLL]Google Scholar
Leonard, J. L., & Lukowiak, K. (1983) The behavior of Aplysia californica: Ethogram and ethologieal analysis of mating. Society for Neuroscience Abstracts 9: 534. [JLL]Google Scholar
Leonard, J. L., & Lukowiak, K. (in press a) An ethogram of the sea slug Navanx inennis (Opisthobranchia, Gastropoda). Zeitschrift für Tierpsychologie. [JLL]Google Scholar
Leonard, J. L., & Lukowiak, K. (in press b) Male-female conflict in a simultaneous hermaphrodite resolved by sperm trading. American Naturalist. [JLL]Google Scholar
Lorenz, K. Z. (1931) Beitrage zur Ethologie sozialer Corviden. Journal of Ornithology 75: 511–19. [taGH]Google Scholar
Lorenz, K. (1932) Betrachtungen über das Erkennen der arteigenen Triebhandlungen bei Voegeln. Journal für Ornithologie 80: 5098. [WMS]Google Scholar
Lorenz, K. (1936) Über die eigentümliche Verbindung branchialer Hirnnerven bei Cypsclus apus. Morphologisches Jahrbuch 77: 305–25. [WMS]Google Scholar
Lorenz, K. (1937) Über die Bildung des Instinktbegriffes. Natunvissenschaften 25: 298300, 324–31. [WMS]Google Scholar
Lorenz, K. (1943) Die angeborenen Formen moeglieher Erfahrung. Zeitschrift für Ticrpsychologie 5: 235409. [WMS]Google Scholar
Lorenz, K. (1950) The comparative method in studying innate behavior patterns. Symposia of the Society for Experimental Biology 4: 221–68. [taGH, ETW, WMS]Google Scholar
Lorenz, K. (1958) The evolution of behavior. Scientific American 199: 6778. [ETW]Google Scholar
Lorenz, K. (1965) Evolution and modification of behavior. University of Chicago Press. [PB, WMS, ETW]Google Scholar
Lorenz, K. (1970) Studies in animal and human behavior, vol. 1. Harvard University Press. [WMS]Google Scholar
Lorenz, K. (1981) The foundations of ethology. Springer-Verlag. [GE, JE, RAH, rGH, WMS]CrossRefGoogle Scholar
Lynch, J. C. (1980) The functional organization of posterior parietal association cortex. Behavioral and Brain Sciences 3(4):485534. [HDS]Google Scholar
McAllister, L. B., Scheller, R. H., Kandel, E. R., & Axel, R. (1983) In situ hybridization to study the origin and fate of identified neurons. Science 222: 800–8. [ETW]Google Scholar
McClosky, D. I., Colebatch, J. G., Potter, E. K. & Burke, D. (1983) Judgements about onset of rapid voluntary movements in man. Journal of Neurophysiology 48: 851–63. [RDF]Google Scholar
McCulloch, W. S. & Pitts, W. H. (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5: 115–33. [MAA, taGH]Google Scholar
McDougall, W. (1923) An Outline of Psychology. Methuen. [taGH]Google Scholar
MacKay, W. A. (1980) The motor programs: Back to the computer. Trends in Neuroscicnces 3: 97100. [FC]Google Scholar
Manning, A. (1972) An introduction to animal behaviour, 2nd ed.Arnold. [DMG, taGH, ETW]Google Scholar
Manning, A. (1979) An introduction to animal behaviour, 3rd ed.Arnold. [DLM]Google Scholar
Markowitsch, H. J. & Pritzel, M. (1978) Single unit activity in cat prefrontal and posterior association cortex during performance of spatial research tasks. Brain Research 149: 5375. [DMG]Google Scholar
Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. Freeman. [MAA, DMG]Google Scholar
Marr, D. & Poggio, T. (1977) From understanding computation to understanding neural circuitry. Neurosciences Research Program Bulletin 15: 470–88. [MAA]Google Scholar
Marzio, P. C. (1973) Rube Goldberg – His life and work. Harper & Row. [WMS]Google Scholar
Medawar, P. (1967) The art of the soluble. Methuen. [DLM]Google Scholar
Merton, P. A. (1953) Spinal reflex action. In: The spinal cord. Ciba Symposium, Churchill, London, 124. [DMG]Google Scholar
Mesulam, M. M., Mufson, E. J., Levey, A. L. & Wainer, B. H. (1983) Cholinergie innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. Journal of Comparative Neurology 214: 170–97. [HDS]Google Scholar
Minsky, M. & Papert, S. (1969) Perceptions: An introduction to computational geometry. MIT Press. [rGH]Google Scholar
Morasso, P. (1981) Spatial control of arm movements. Experimental Brain Research 42: 223–27. [rGH]Google Scholar
Morris, D. (1967) The naked ape. McGraw-Hill. [taGH]Google Scholar
Nevatia, R. (1982) Machine perception. Prentice-Hall. [MAA]Google Scholar
Nottebohm, F., Stokes, T. M. & Leonard, C. M. (1976) Central control of song in the canary. Journal of Comparative Neurology 165: 457–86. [taGH]Google Scholar
Nyquist, H. (1932). Regeneration theory. Bell Systems Technical Journal, 11: 126–47. [DMG]Google Scholar
Ohta, M. (1982) Work reviewed in T. O. Binford, Survey of model-based image analysis systems. International Journal of Robotics Research. [DMG]Google Scholar
O'Shea, M. & Williams, J. L. D. (1974) The anatomy and output connection of a locust visual interneurone: The lobular giant movement detector (LGMD) neurone. Journal of Comparative Physiology 91: 257–66. [taGH]Google Scholar
Ostriker, G., Pellionisz, A. & Llinas, R. (1982) Tensor network theory applied to the oculomotor system: CNS activity expressed with natural, non-orthogonal coordinates. Abstract No. 45.2, 12th Annual Meeting of the Society for Neuroscience, Minneapolis. [taGH]Google Scholar
Paillard, J. (1960) The patterning of skilled movement. In: Handbook of physiology. Seet. 1, vol. III Neurophysiology, ed. Fields, J., Magoun, H. W., & Hall, W. E.. American Physiological Society. [FC]Google Scholar
Paillard, J. (1983) Introductory lecture: The functional labelling of neural codes. In: Neural coding of motor performance, Experimental Brain Reserach Sup. 7, ed. Massion, J., Paillard, J., Schultz, W. & Wiesendanger, M.. Springer-Verlag. [FC]Google Scholar
Passmore, J. (1970) The perfectability of man. New York. [taGH]Google Scholar
Pearson, K. G. (1976) Nerve cells without action potentials. In: Simpler networks and behavior, ed. Fentress, J. C.. Sinauer. [taGH]Google Scholar
Pearson, K. G., Heitler, W. J. & Steeves, J. D. (1980) Triggering of locust jump by multimodal inhibitory interneurons. Journal of Neurophysiology 43: 257–78. [taGH]Google Scholar
Pearson, K. G. & Robertson, R. M. (1981) Interneurons coactivating hindleg flexor and extensor motoneurons in the locust. Journal of Comparative Physiology A 144: 391400. [taGH]Google Scholar
Pellionisz, A. & Llinas, R. (1979) Brain modelling by tensor network theory and computer simulation. The cerebellum: Distributed processor for predictive coordination. Neuroscience 4: 323–48. [rGH]Google Scholar
Perachio, A. A. (1978) Hypothalamic regulation of behavioral and hormonal aspects of aggression and sexual performance. In: Recent advances in primatology, vol 1, Behavior, ed. Chivers, D. J. & Herbert, J.. Academic Press. [HDS]Google Scholar
Perret, C., Millanevoye, M., Cabelguen, J. M. (1972) Messages spinaux ascendants pendant une locomotion fictive chez le chat curanisé. Journal de Physiologie 65: 153. [FC]Google Scholar
Peterson, E. L. (1983a) Generation and coordination of heartbeat timing oscillation in the medicinal leech. 1. Oscillation in isolated ganglia. Journal of Neurophysiology 49: 611–26. [taGH]CrossRefGoogle ScholarPubMed
Peterson, E. L. (1983b) Generation and coordination of heartbeat timing oscillation in the medicinal leech. 2. Intersegmental coordination. Journal of Neurophysiology 49: 627–38. [taGH]Google Scholar
Pfaff, D. W. (1980) Estrogens and brain function. Springer-Verlag. [HDS]Google Scholar
Pfaff, D. W., Lewis, C., Diakow, C. & Keiner, M. (1973) Neurophysiological analyses of mating behavior responses as hormone-sensitive reflexes. In: Progress in physiological psychology, ed. Stellar, E. & Sprague, J. M.. Academic Press. [DJI]Google Scholar
Pinsker, H., Hening, W. A., Carew, T. J. & Kandel, E. R. (1973) Long-term sensitization of a defensive withdrawal reflex in Aplysia. Science 182: 1039–42. [ETW]Google Scholar
Prechtl, H. F. R. (1956) Neurophysiologische Mechanismen des Formstarren Verhaltens. Behavior 9: 246319. [AMI]Google Scholar
Preston, R. J. & Lee, R. M. (1973) Feeding behavior in Aplysia californica: Role of chemical and tactile stimuli. Journal of Comparative and Physiological Psychology 82: 368–81. [IK]Google Scholar
Pringle, J. W. S. (1939) The motor mechanism of the insect leg. Journal of Experimental Biology 16: 220–31. [taCH]Google Scholar
Rehbein, H. (1976) Auditory neurons in the ventral cord of the locust:Morphological and functional properties. Journal of Comparative Physiology A 110: 233–50. [taGH]Google Scholar
Reichardt, W. & Poggio, T. (1976) Visual control of orientation behavior in the fly. I.: A quantitative analysis. Quarterly Reviews of Biophysics 9: 311–75. [MAA]Google Scholar
Reichardt, W., Poggio, T. & Hansen, K. (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II: Towards the neural circuitry. Biological Cybernetics. 46(Suppl. 1):130. [rGH]Google Scholar
Reichert, H. (in press) The cellular basis of sensorimotor coordination in the flight control system of the locust Locusta migratoria. In: Bilateral and intersegmental coordination, ed. Bush, B. M. H. & Clarac, F.. Cambridge University Press. [CHFR]Google Scholar
Roeder, K. D. (1967) Nerve cells and insect behavior. Harvard University Press. [FD, taGH]Google Scholar
Roeder, K. D. (1975) Neural factors and excitability in insect behavior. Journal of Experimental Zoology 194: 7588. [taGH]Google Scholar
Reiss, R. F., ed. (1964) Neural theory and modelling. Stanford University Press. [rGH]Google Scholar
Rose, J. D. & Michael, R. P. (1978) Facilitation by estradiol of midbrain and pontine unit responses to vaginal and somatosensory stimulation in the squirrel monkey (Saimiri sciureus). Experimental Neurology 58: 4658. [HDS]Google Scholar
Rothenbuhler, W. C. (1964a) Behaviour genetics of nest cleaning in honeybees. 1. Responses of four inbred lines to disease-killed brood. Animal Behaviour 12: 578–83. [taGH]Google Scholar
Rothenbuhler, W. C. (1964b) Behaviour genetics of nest cleaning in honey-bees. 4. Responses of F and backcross generations to disease-killed brood. American Zoologist 4: 111–23. [taGH]Google Scholar
Rowell, C. H. F. (1971) The orthopteran descending movement detectors (DMD) neurones: A characterisation and review. Zeitschrift fürVergleichende Physiologic 73: 167–94. [taGH]Google Scholar
Rowell, C. H. F., O'Shea, M. & Williams, J. L. D. (1977) The neuronal basis of a sensory analyser, the acridid movement detector system. 4. The preference for small field stimuli. Journal of Experimental Biology 68: 157–85. [CHFR]Google Scholar
Russell, E. S. (1934) The behaviour of animals. Arnold. [taGH]Google Scholar
Sackett, G. P. (1966) Monkeys reared in isolation with pictures as visual input: Evidence for an innate releasing mechanism. Science 154: 1468–73. [HDS]Google Scholar
Sahley, C., Rudy, J. W. & Gelperin, A. (1981) An analysis of associative learning in a terrestrial mollusc. 1. Higher-order conditioning, blocking, and a transient US pre-exposure effect. Journal of Comparative Physiology A 144: 18. [ETW]Google Scholar
Satou, M. & Ewert, J.-P. (1984) Specification of tecto-motor outflow in toads by antidromic stimulation of tecto-bulbar/spinal pathways. Naturwissenschaften 71: 5253. [J-PE]Google Scholar
Scheich, H. (1983) Sensorimotor interfacing. In: Advances in vertebrate neuroethology, ed. Ewert, J. P., Capranica, R. R. & Ingle, D. J.. Plenum. [Ge]Google Scholar
Scheller, R. H., Rothman, B. S. & Mayeri, E. (1983) A single gene encodes multiple peptide-transmitter candidates involved in a stereotyped behavior. Trends in Neurosciences 340–45. [RDF, CHFR]Google Scholar
Schleidt, W. (1962) Die historische Entwicklung der Begriffe “Angeborenes auslösendes Schema” und “Angeborener Auslösemechanismus” in der Ethologie. Zeitschrift für Tierpsychohgie 19: 697722. [J-PE]Google Scholar
Schleidt, W. M. (1964) Über die Spontaneitaet von Erbkoordinationen. Zeitschrift für Tierpsychohgie 21: 235–56. [WMS]Google Scholar
Schleidt, W. M. (1965) Gaussian interval distribution in spontaneously occurring innate behaviour. Nature 206: 1061–62. [WMS]Google Scholar
Schleidt, W. M. (1974) How “fixed” is the Fixed Action Pattern? Zeitschrift für Tierpsychohgie 36: 184211. [taGH, WMS]Google Scholar
Schleidt, W. M. (1981) The behavior of organisms, as it is linked to genes and populations. In: Perspectives in ethology, ed. Bateson, P. P. G. & Klopfer, P. H., vol. 4. Plenum. [WMS]Google Scholar
Schleidt, W. M. & Crawley, J. N. (1980) Patterns in the behaviour of organisms. Journal of Social and Biological Structures 3: 115. [WMS]Google Scholar
Schneider, G. E., Jhaveri, S., Edwards, M. L., & So, K. F. (1984) Regeneration, routing, and re-distribution of axons after early lesions: Changes with age and functional impact. In: Advances in neurology, ed. Eccles, J. C. & Dimitrijevic, M. R.. Raven Press. [DJI]Google Scholar
Schneirla, T. C. (1952) A consideration of some conceptual trends in comparative psychology. Psychological Bulletin. 49: 559–97. [taGH]Google Scholar
Selverston, A. I. (1980) Are central pattern generators understandable? Behavioral and Brain Sciences 3: 535–71. [FC, JD, taGH]Google Scholar
Selverston, A. I., Russell, D. F., Miller, J. P. & King, D. G. (1976) The stomatogastric nervous system: Structure and function of a small neural network. Progress in Neurobiology 7: 215–90. [JD, taGH]Google Scholar
Sherrington, C. S. (1906) The integrative action of the nervous system. Scribner's. [taGH, AM]Google Scholar
Simmons, J. A. (1980) The processing of sonar echoes by bats. In: Animal sonar systems, ed. Busnel, R. -G. & Fish, J. E., Plenum. [taGH]Google Scholar
Sombati, S. (1983) Orchestrating behaviors: A central modulatory role of octopamine in the locust. Abstract No. 24.11, 13th Annual Meeting of the Society for Neuroscience, Boston. [taGH]Google Scholar
Stent, G. S. (1981) Cerebral hermeneutics. Journal of Social and Biological Structures 4: 107–24. [MAA]Google Scholar
Susswein, A., Weiss, K. R. & Kupfermann, I. (1978) The effects of food arousal on the latency of biting in Aplysia. Journal of Comparative Physiology 123: 3141. [JK]Google Scholar
Szentagothai, J. & Arbib, M. A. (1975) Conceptual models of neural organization. MIT Press. [MAA]Google Scholar
Taub, E. (1977) Movement in nonhuman primates deprived of somatosensory feedback. In: Exercise and sport science reviews, vol. 4, ed. Keogh, J. F.. Journal Publishing Affiliates. [HDS]Google Scholar
Thompson, K. J. (1982) The neural mechanism of oviposition digging in grasshoppers. Doctoral dissertation, University of Oregon. [taGH]Google Scholar
Thorpe, W. H. (1979) The origins and rise of ethology. Praeger. [taCH]Google Scholar
Tinbergen, N. (1951) The study of instinct. Oxford University Press. [DMG, taGH, RAH, ETW]Google Scholar
Truman, J. W. (1979) Interaction between abdominal ganglia during the performance of hormonally triggered behavioural programmes in moths. Journal of Experimental Biology 82: 239–54. [CHFR]Google Scholar
Truman, J. W., Mumby, S. M. & Welch, S. K. (1980) Involvement of cyclic GMP in the release of stereotyped behaviour patterns in moths by apeptide hormone. Journal of Experimental Biology 201–12. [CHFR]Google Scholar
Walters, E. T. & Byrne, J. H. (1983a) Associative conditioning of single sensory neurons suggests a cellular mechanism for learning. Science 219: 405–8. [SG, ETW]Google Scholar
Weiss, K. R., Koch, U. T., Koester, J., Mandelbaum, D. E. & Kupfermann, I. (1981) Neural and molecular mechanisms of food-induced arousal in Aplysia californica. Advances in Physiological Sciences 23: 305–44. [IK]Google Scholar
Weiss, P. (1941) Does sensory control play a constructive role in the development of motor coordination? Schweizer Medizinische Wochenschrift 71: 591–95. [taGH]Google Scholar
Weiss, P. (1950) Experimental analysis of co-ordination by the disarrangement ofcentral-peripheral relations. Symposia of the Society for Experimental Biology 4: 92111. [tarCH]Google Scholar
West, J. C. (1953) Servomechanisms. English Universities Press. [DMG]Google Scholar
Wetzel, M. C. & Howell, L. G. (1981) Properties and mechanisms of locomotion. In: Handbook of behavioral neurobiology. vol. 5: Motor coordination, eds. Towe, A. L. & Luschei, E. S.. Plenum. [FC]Google Scholar
Wheeler, W. M. (1902) “Natural history,” “oecology”, or “ethology”. Science 15: 971–76. [taGH]Google Scholar
Whitman, Ch. O. (1819) Animal Behavior. 16th lecture, Biology Lectures. Woods Hole Publications, Mass. [taGH]Google Scholar
Wiener, N. (1948) Cybernetics. MIT Press. [taGH]Google Scholar
Wiersma, C. A. G. (1947) Giant nerve fibre system of the crayfish. A contribution of comparative physiology of the synapse. Journal of Neurophysiology 10: 2338. [CHFR]Google Scholar
Wiersma, C. A. G. (1974) Behavior of neurons. In: The neurosciences: Third study program, ed. Schmitt, F. O.. MIT Press. [J-PE]Google Scholar
Wike, E. L., ed. (1966) Secondary reinforcement. Harper and Row. [SG]Google Scholar
Willows, A. O. D., Dorsett, D. A. & Hoyle, G. (1973) The neuronal basis of behavior in Tritonia. 3. Neuronal mechanisms of a fixed action pattern. Journal of Neurobiology 4: 255–85. [taGH]Google Scholar
Wilson, D. M. (1972) Genetic and sensory mechanisms for locomotion and orientation in animals. American Scientist 69: 358–65. [taGH]Google Scholar
Wine, J. J. & Krasne, F. B. (1982) The cellular organization of crayfish escape behavior. In: The biology of Crustacea, vol. III, ed. Atwood, H. & Sandeman, D.. Academic Press. [CHFR]Google Scholar
Woody, C. D., Swartz, B. E. & Gruen, E. (1978) Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats. Brain Research 158: 373–95. [ETW]Google Scholar
Zaretsky, M. (1982) Quantitative measurements of centrally and retinally generated saccadic suppression in a locust movement detector neurone. Journal of Physiology-London 328: 521–33. [RDF]Google Scholar