Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T22:46:35.452Z Has data issue: false hasContentIssue false

Reticulo-cortical activity and behavior: A critique of the arousal theory and a new synthesis

Published online by Cambridge University Press:  04 February 2010

C.H. Vanderwolf
Affiliation:
Department of Psychology, University of Western Ontario, London, Ontario, CanadaN6A 5C2
T.E. Robinson
Affiliation:
Neuroscience Laboratory, University of Michigan, Ann Arbor, Mich. 48109

Abstract

It is traditionally believed that cerebral activation (the presence of low voltage fast electrical activity in the neocortex and rhythmical slow activity in the hippocampus) is correlated with arousal, while deactivation (the presence of large amplitude irregular slow waves or spindles in both the neocortex and the hippocampus) is correlated with sleep or coma. However, since there are many exceptions, these generalizations have only limited validity. Activated patterns occur in normal sleep (active or paradoxical sleep) and during states of anesthesia and coma. Deactivated patterns occur, at times, during normal waking, or during behavior in awake animals treated with atropinic drugs. Also, the fact that patterns characteristic of sleep, arousal, and waking behavior continue in decorticate animals indicates that reticulo-cortical mechanisms are not essential for these aspects of behavior.

These puzzles have been largely resolved by recent research indicating that there are two different kinds of input from the reticular activating system to the hippocampus and neocortex. One input is probably cholinergic; it may play a role in stimulus control of behavior. The second input is noncholinergic and appears to be related to motor activity; movement-related input to the neocortex may be dependent on a trace amine.

Reticulo-cortical systems are not related to arousal in the traditional sense, but may play a role in the control of adaptive behavior by influencing the activity of the cerebral cortex, which in turn exerts control over subcortical circuits that co-ordinate muscle activity to produce behavior.

Type
Target Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, H. M. & Hye, H. K. A. (1966) Concentration of histamine in different parts of brain and hypophysis of cat and its modification by drugs. British Journal of Pharmacology and Chemotherapy 28:137–52. [CHV]CrossRefGoogle Scholar
Adametz, J. H. (1959) Rate of recovery of functioning in cats with rostral reticular lesions. Journal of Neurosurgery 16:8598. [GGS]CrossRefGoogle ScholarPubMed
Adams, P. R. & Brown, D. A. (1980) Luteinizing hormone-releasing factor and muscarinic agonists act on the same voltage-sensitive K+ current in bullfrog sympathetic neurones. British Journal of Pharmacology 68:353–55. [KK]CrossRefGoogle ScholarPubMed
Adey, W. R. (1966) Neurophysiological correlates of information transaction and storage in brain tissue. In:Progress in physiological psychology, Vol. I, ed. Stellar, E. & Sprague, J. M., pp. 143. New York: Academic Press. [TLB]Google Scholar
Albanus, L.; Hammarstrom, L., Sundwall, A., Ulberg, S. & Vangbo, B. (1968) Distribution and metabolism of H-atropine in mice. Acta Physiologica Scandinavica 73:447–56. [CHV]CrossRefGoogle Scholar
Albanus, L.; Sundwall, A.; Vangbo, B. & Windbladh, B. (1968) The fate of atropine in the dog. Acta Pharmacologica et Toxicologica 26:571–82. [CHV]CrossRefGoogle ScholarPubMed
Altman, J.; Brunner, R. L. & Bayer, S. A. (1973) The hippocampus and behavioral maturation. Behavioral Biology 8:557–96. [GH]CrossRefGoogle ScholarPubMed
Anden, N. E.; Dahlström, A.; Fuxe, K.; Larsson, K.; Olson, L. & Ungerstedt, U. (1966) Ascending monamine neurons to the telencephalon and diencephalon. Acta physiologica Scandinavica 67:313–26. [CHV]CrossRefGoogle Scholar
Andersen, P. & Andersson, S. A. (1968) The physiological basis of the alpha rhythms. New York: Appleton-Century-Crofts. [JCS]Google Scholar
Amiable, A. & Wearden, J. H. (1979) Grooming movements as operants in the rat. Journal of the Experimental Analysis of Behavior 32:297304. [CHV]CrossRefGoogle Scholar
Arnolds, D. E. A. T.; Lopes da Silva, F. H.; Aitink, J. W. & Kamp, A. (1979a) Hippocampal EEC and behavior in dog. I. Hippocampal EEC correlates of gross motor behavior. Electroencephalography and Clinical Neurophysiology 46:552–70. [CHV]CrossRefGoogle Scholar
Arnolds, D. E. A. T.; Lopes da Silva, F. H.; Aitink, J. W. & Kamp, A. (1979b) Hippocampal EEC and behavior in dog. II. Hippocampal EEC correlates with elementary motor acts. Electroencephalography and clinical Neurophysiology 46:571–80. [CHV]CrossRefGoogle Scholar
Arnolds, D. E. A. T.; Lopes da Silva, F. H.; Aitink, J. W. & Kamp, A. (1979c) Hippocampal EEC and behavior in dog. III. Hippocampal EEG correlates of stimulus-response tasks and of sexual behavior. Electroencephalography and clinical Neurophysiology 46:581–91. [CHV]CrossRefGoogle Scholar
Assaf, S. Y. & Miller, J. J. (1978) The role of a raphé serotonin system in the control of septal unit activity and hippocampal desychronization. Neuro-science 3:539–50. [CHV]Google Scholar
Azmitia, E. (1978) The serotonin-producing neurons of the midbrain median and dorsal raphé nuclei. In: Handbook of psychopharmacology, v. 9, Chemical pathways in the brain, ed. Iverson, L. L., Iverson, S. D. & Snyder, S. H., pp. 233314. New York: Plenum Press. [CHV]CrossRefGoogle Scholar
Bard, P. & Rioch, D. Mek. (1937) A study of four cats deprived of neocortex and additional portions of forebrain. Bulletin of the Johns Hopkins Hospital 60:73147. [CHV]Google Scholar
Bartus, R. T.; Dean, R. L.; Goas, J. A. & Lippa, A. S. (1980) Age-related changes in passive avoidance retention: Modulation with dietary choline. Science 209:301–03. [CHV]CrossRefGoogle ScholarPubMed
Batini, C.; Moruzzi, G.; Palestini, M.; Rossi, G. F. & Zanchetti, A. (1959) Effects of complete pontine transections on the sleep-wakefulness rhythm: The midpontine pretrigeminal preparation. Archives italiennes de Biologie 97:112. [CHV]Google Scholar
Batsel, H. L. (1960) Electroencephalographic synchronization and desynch-ronization in the chronic "cerveau isolé" of the dog. Electroencephalography and Clinical Neurophysiology 12:421–30. [JRV]CrossRefGoogle ScholarPubMed
Batsel, H. L. (1964) Spontaneous desynchronization in the chronic cat. "cerveau isolé." Archives Italicnnes de Biologic. 102:281306. [JRV]Google Scholar
Baust, W.; Niemczyk, H. & Vieth, J. (1963) The action of blood pressure on the ascending reticular activating system with special reference to adrenaline-induced EEC arousal. Electroencephalography and clinical Neurophysiology 15:6372. [CHV]CrossRefGoogle Scholar
Baxter, B. L. (1969) Induction of both emotional behavior and a novel form of REM sleep by chemical stimulation applied to cat mesencephalon. Experimental Neurology 23:220–30. [PS]CrossRefGoogle Scholar
Beecher, H. K. & McDonough, F. K. (1939) Cortical action potentials during anesthesia. Journal of Neurophysiology 2:289307. [CHV]CrossRefGoogle Scholar
Bein, H. J. (1956) The pharmacology of Rauwolfia. Pharmacological Review 8:435–83. [CHV]Google ScholarPubMed
Belardetti, F.; Borgia, R. & Mancia, M. (1977) Prosencephalic mechanisms of EEG desynchronization in "cerveau isolé" of the cat. Electroencephalography and Clinical Neurophysiology 42:213–25. [JRV]CrossRefGoogle Scholar
Ben-Ari, Y.; Dingledine, R.; Kanazawa, I. & Kelly, J. S. (1976) Inhibitory effects of acetylcholine on neurones in the feline nucleus reticularis thalami. Journal of Physiology 261:647–71. [JCS]CrossRefGoogle ScholarPubMed
Ben-Ari, Y.; Krnjević, K.; Reinhardt, W. & Ropert, N. (1981) Intracellular observations on the disinhibitory action of acetylcholine in the hippocampus. Neuroscience. In press. [KK]CrossRefGoogle ScholarPubMed
Bennett, T. L. (1973) The effects of centrally blocking hippocampal theta activity on learning and retention. Behavioral Biology 9:541–52. [GH]CrossRefGoogle Scholar
Bennett, T. L. (1975) The electrical activity of the hippocampus and processes of attention. In: The hippocampus, vol. 2, ed. Isaacson, R. L. & Pribram, K. H., pp. 7199. New York: Plenum Press. [TLB, CHB]CrossRefGoogle Scholar
Bennett, T. L. (1979) A gating function for the hippocampus in working memory. Behavioral and Brain Sciences 2:322–33. [TLB]CrossRefGoogle Scholar
Berntson, G. G. & Micco, D. J. (1976) Organization of brain stem behavioral systems. Brain Research Bulletin 1:471–83. [CHV]CrossRefGoogle ScholarPubMed
Biscoe, T. J. & Straughan, D. W. (1966) Micro-electrophoretic studies of neurones in the cat hippocampus. Journal of Physiology (London) 183:341–59. [CHV]CrossRefGoogle ScholarPubMed
Black, A. H. (1975) Hippocampal electrical activity and behavior. In: The Hippocampus, vol. 2: Neurophysiology and behavior, ed. Isaacson, R. L. & Pribram, K. H., pp. 129167. Plenum Press, New York. [CHV, OSV]CrossRefGoogle Scholar
Black, A. H.; Young, G. A. & Batenchuk, C. (1970) Avoidance training of hippocampal theta waves in flexedilised dogs and its relation to skeletal movement. Journal of Comparative and Physiological Psychology 70:1524. [GH]CrossRefGoogle ScholarPubMed
Bland, B. H. & Vanderwolf, C. H. (1972a) Electrical stimulation of the hippocampal formation: Behavioral and bioelectrical effects. Brain Research 43:89106. [GH]CrossRefGoogle ScholarPubMed
Bland, B. H. & Vanderwolf, C. H. (1972b) Diencephalic and hippocampal mechanisms of motor activity in the rat: Effects of posterior hypothalamic stimulation on behavior and hippocampal slow wave activity. Brain Research 43:6788. [CHV]CrossRefGoogle ScholarPubMed
Bland, B. H. & Whishaw, I. Q. (1976) Generators and topography of hippocampal theta (RSA) in the anesthetized and freely moving rat. Brain Research 118:259–80. [CHV]CrossRefGoogle ScholarPubMed
Bland, B. H.; Andersen, P. & Ganes, T. (1975) Two generators of hippocampal theta activity in rabbits. Brain Research 94:199218. [CHV]CrossRefGoogle ScholarPubMed
Bland, B. H.; Andersen, P.; Ganes, T. & Sveen, O. (1980) Automated analysis of rhythmicity of physiologically identified hippocampal formation neurons. Experimental Brain Research 38:205–19. [GH]CrossRefGoogle ScholarPubMed
Bolme, P.; Fuxe, K. & Lidbrink, P. (1972) On the function of central catecholamine neurons - their role in cardiovascular and arousal mechanisms. Research Communications in Chemical and Pathological Pharmacology 4:657–97. [CHV]Google ScholarPubMed
Bonnet, V. & Bremer, F. (1937) Action de potassium, du calcium, et de l'acétylcholine sur les activités électriques, spontanées et provoquées de l'ecorce cerebrale. Comptes Rendus de la Societé de Biologic (Paris) 126:1271–75. [CHV]Google Scholar
Boulton, A. A. (1979) Trace amines in the central nervous system. International Review of Biochemistry, 26:179206. [CHV]Google Scholar
Boulton, A. A.; Juorio, A. V.; Philips, S. R. & Wu, P. H. (1977) The effects of reserpine and 6-hydroxydopamine on the concentration of some arylalkyl-amines in rat brain. British Journal of Pharmacology 59:209–14. [CHV]CrossRefGoogle Scholar
Bouyer, J. J.; Montaron, M. F. & Rougeul, A. (1981) Fast fronto-parietal rhythms during combined focused attentive behaviour and immobility in cat: Cortical and thalamic localizations. Electroencephalography and Clinical Neurophysiology, In press. [AR]CrossRefGoogle ScholarPubMed
Bowker, R. M. & Morrison, A. R. (1977) The PGO spike: An indicator of hy-peralertness. European Congress on Sleep Research, 3d, Montpellier, 1976. ed. Koella, W. P. and Levin, P.. Sleep, 1976, memory, environment, epilepsy, sleep staging, pp. 2327. Basel, New York, Karger. [CHV]Google Scholar
Bradley, P. B. (1968) The effect of atropine and related drugs on the EEG and behavior. Progress in Brain Research 28:313. [JRV]CrossRefGoogle Scholar
Bradley, P. B. & Elkes, J. (1953) A technique for recording the electrical activity of the brain in the conscious animal. Electroencephalography and clinical Neurophysiology 5:451–56. [CHV]CrossRefGoogle ScholarPubMed
Bradley, P. B. & Elkes, J. (1957) The effects of some drugs on the electrical activity of the brain. Brain 80:77117. [CHV]CrossRefGoogle ScholarPubMed
Bradley, P. B. & Hance, A. J. (1957) The effect of chlorpromazine and methopromazine on the electrical activity of the brain in the cat. Electroencephalography and clinical Neurophysiology 9:191215. [CHV]CrossRefGoogle ScholarPubMed
Bradley, P. B. & Nicholson, A. N. (1962) The effect of some drugs on hippocampal arousal. Electroencephalography and clinical Neurophysiology 14:824–34. [CHV]CrossRefGoogle ScholarPubMed
Bremer, F. (1935) Cerveau "isolé" et physiologic du sommeil. Comptes Rendus de la Societé de Biologic (Parts) 118:1235–41. [CHV]Google Scholar
Bremer, F. (1936) Action de différents narcotiques sur les activités électriques spontanée et réflexe du cortex cérébral. Comptes Rendus de la Societe de Biologic (Paris) 121:861–66. [CHV]Google Scholar
Bremer, F. (1937) L'activité cérébrale au cours du sommeil et de la narcose. Contribution á l'étude du mécanisme du sommeil. Bulletin de la Académic Royale de Médicine de Belgique 4:6886. [JRV]Google Scholar
Bremer, F. & Chatonnet, J. (1949) Acétylcholine et cortex cérébral. Archives Internationales de Physiologic 57:106–9. [GHV]Google Scholar
Bricolo, A. (1975) Neurosurgical exploration and neurological pathology as a means for investigating human sleep semiology and mechanisms. In: Experimental study of human sleep: Methodological problems, ed. Lairy, G. C. & Salzarulo, P., pp. 5182. Amsterdam: Elsevier Scientific Publishing Company. [JRV]Google Scholar
Brimblecombe, R. W. (1974) Drug actions on cholinergic systems. Baltimore: University Park Press. [CUV]Google Scholar
Broadbent, D. E. (1977) The hidden prealtentive processes. American Psychologist 32(2):109–18. [EC]CrossRefGoogle ScholarPubMed
Brodal, A. (1969) Neurological anatomy, pp. 304344. New York: Oxford University Press. [JRV]Google Scholar
Brown, D. A. & Adams, P. R. (1980) Muscarinic suppression of novel voltage-sensitive K+ current in a vertebrate neurone. Nature, 283:673–76. [KK]CrossRefGoogle Scholar
Brugge, J. F. (1965) An electrographic study of the hippocampus and neocortex in unrestrained rats following septal lesions. Electroencephalography and clinical Neurophysiology 18:3644. [GHV]CrossRefGoogle ScholarPubMed
Buchwald, N. A.; Horvath, F. E.; Wyers, E. J. & Wakefield, C. (1964) Electroencephalogram rhythms correlated with milk reinforcement in cats. Nature, (London) 201:830–31. [GHV]CrossRefGoogle ScholarPubMed
Buser, P. (1980) Attention: A brief survey of some of its electrophysiological correlates. In: Functional states of the brain: Their determinants, ed. Koukkou, M., Lehmann, D. & Angst, J., pp. 175188. Amsterdam: Elsevier/ North Holland Biomedical Press. [JRV]Google Scholar
Buzsáki, G.; Grastyan, E.; Czopf, J.; Kellenyi, L. & Prohaska, O. (1981 in press) Changes of neuronal transmission in the rat hippocampus during behavior. Brain Research. [BRK]CrossRefGoogle ScholarPubMed
Buzsáki, G.; Grástyan, E.; Tveritskaya, I. N. & Czopf, F. (1979) Hippocampal evoked potentials and EEG changes during classical conditioning in the rat. Electroencephalography and Clinical Neurophysiology 47:6474. [GB]CrossRefGoogle ScholarPubMed
Buzsáki, G.; Haubenreiser, F.; Grastyán, E.; Czopf, F. & Kellényi, L. (1981) Hippocampal slow wave activity changes during conditioning in the cat. Electroencephalography and Clinical Neurophysiology. In press. [GB]CrossRefGoogle Scholar
Callaway, E. & Band, R. I. (1958) Some psychopharmacological effects of atropine: Preliminary investigation of broadened attention. AMA Archives of Neurology & Psychiatry 79:91102. [EC]CrossRefGoogle ScholarPubMed
Callaway, E. & Dembo, D. (1958) Narrowed attention: A psychological phenomenon that accompanies a certain physiological change. AMA Archives of Neurology & Psychiatry, 79:7490. [EC]CrossRefGoogle ScholarPubMed
Carlson, N. R., El-Wakil, F. W.; Standish, L. J. & Ormond, D. (1976) DRL performance, extinction, and secondary reinforcement: Effects of appetitive value of food in mice with septal lesions. Journal of Comparative and Physiological Psychology 90:780–89. [NRC]CrossRefGoogle ScholarPubMed
Carlsson, A.; Lindqvist, M. & Magnusson, T. (1957)3–4 Dihydroxyphenylala-nine and 5-hydroxytryptophan as reserpine antagonists. Nature, (London) 180:1200. [CHV]CrossRefGoogle Scholar
Celesia, G. G. & Jasper, H. H. (1966) Acetylcholine released from cerebral cortex in relation to state of activation. Neurology 16:1053–64. [HHJ, CUV]CrossRefGoogle ScholarPubMed
Chase, M. H. (1974) Somatic reflex activity during sleep and wakefulness: In: Basic sleep mechanisms, ed. Petre-Quadens, O. & Schlag, J. D., pp. 249–67. [CHV]Google Scholar
Chase, M. H. & Harper, R. M. (1971) Somatomotor and visuomotor correlates of operantly conditioned 12 14 e/sec sensorimotor cortical activity. Electroencephalography and clinical Neurophysiology 31:8592. [CHV]CrossRefGoogle Scholar
Chatrian, G. E.; Petersen, M. C. & Lazarte, J. A. (1959) The blocking of the rolandic wicket rhythm and some central changes related to movement. Electroencephalography and Clinical Neurophysiology 11:497510. [AR]CrossRefGoogle ScholarPubMed
Chow, K. L. & Randall, W. (1964) Learning and retention in cats with lesions in reticular formation. Psychonomic Science 1:259–60. [GCS]CrossRefGoogle Scholar
Coenen, A. M. L. (1975) Frequency analysis of rat hippocampal electrical activity. Physiology and Behavior 14:391–94. [CHV]CrossRefGoogle ScholarPubMed
Coleman, J. R. & Lindsley, D. B. (1975) Hippocampal electrical correlates of free behavior and behavior induced by stimulation of two hypothalamic-hippocampal systems in the cat. Experimental Neurology 49:506–28. [CHV]CrossRefGoogle ScholarPubMed
Cordeau, J. P.; de Champlain, J. & Jacks, B. (1971) Exciation and prolonged waking produced by catecholamines injected into the ventricular system of cats. Canadian Journal of Physiology and Pharmacology 49:627–31. [GHV]CrossRefGoogle Scholar
Covello, A.; De Barros-Ferreira, M. & Lairy, G. C. (1975) Elude télémétrique des rythmes centraux chez l'enfant. Electroencephalography and Clinical Neurophysiology 38:307 19. [AR]CrossRefGoogle Scholar
Creery, B. L. & Bland, B. H. (1980) Ontogeny of fascia dentata electrical activity and motor behavior in the Dutch belted rabbit (Oryctolagus cuniculus). Experimental Neurology 67:554–72. [CHV]CrossRefGoogle ScholarPubMed
Creutzfeldt, O.; Grünewald, G.; Simonova, O. & Schmiz, H. (1967) Changes of the basic rhythms of the EEG during the performance of mental and visuomotor tasks. In: Attention in neurophysiology, ed. Evans, C. R. and Mulholland, T. B., pp. 148–68. London: Butterworths. [CHV]Google Scholar
Davies, P. & Maloney, A. J. F. (1976) Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet 1403. [CHV]CrossRefGoogle Scholar
Davis, K. L.; Mohs, R. C.; Tinklenberg, J. R.; Pfefferbaum, A.; Hollisler, L. E. & Kopell, B. S. (1978) Physostigmine: Improvement of long-term memory processes in humans. Science 201:272–74. [CHV]CrossRefGoogle Scholar
Delgado, J. M. R. (1969) Physical control of the mind: Toward a psychocivil-ized society. New York: Harper & Row. [NRC]Google Scholar
Delacour, J. (1980) Conditioned modifications of arousal and unit activity in the rat hippocampus. Experimental Brain Research 38:95101. [GH]CrossRefGoogle ScholarPubMed
Dell, P. C. (1958) Humoral effects on the brain stem reticular formations. In: Reticular Formation of the Brain, eds. Jasper, H. H., Proctor, L. D., Knighton, R. S., Noshay, W. C. & Costello, R. T., Little, Brown & Co.: Boston, pp. 365–79. [CHV]Google Scholar
Dell, P. C. (1958) Some basic mechanisms of the translation of bodily needs into behav-iour. In: Neurological basis of behaviour, ed. Wolstenholme, G. E. W. & O'Connor, M., pp. 187203. London: Churchill. [MS]Google Scholar
Dement, W. (1958) The occurrence of low voltage fast electroencephalogram patterns during behavioral sleep in the cat. Electroencephalography and clinical Neurophysiology 10:291–96. [CHV]CrossRefGoogle ScholarPubMed
Dement, W. C. & Kleitman, N. (1957) Cyclic variations in EEC during sleep and their relation to eye movements, body motility and dreaming. Electroencephalography and clinical Neurophysiology 9:673–90. [CHV]CrossRefGoogle Scholar
Dement, W. C. & Miller, M. M. (1974) An introduction to sleep. In: Basic sleep mechanisms, ed. Petre-Quadens, O. & Schlag, J. D.. pp. 271–96. New York: Academic Press. [CHV]Google Scholar
Dement, W. C. & Villablanca, J. (1974) Clinical disorders in man and animal model experiments. In: Basic sleep mechanisms, ed. Petre-Quadens, O. & Schlag, J. D., pp. 328–31. New York and London: Academic Press. [JRV]Google Scholar
De Ryck, M. & Teitelbaum, P. (1978) Neocortical and hippocampal EEG in normal and lateral hypothalamic-damaged rats. Physiology and Behavior 20:403–9. [CHV]CrossRefGoogle ScholarPubMed
Dismukes, R. K. (1979) New concepts of molecular communication among neurons. Behavioral and Brain Sciences, 2:309448. [MS]CrossRefGoogle Scholar
Dodd, J.; Dingledine, R. & Kelly, J. S. (1981) The excitatory action of acetylcholine on hippocampal neurones of the guinea pig and rat maintained in vitro.Brain Research 208: In Press. [KK]Google Scholar
Donchin, E. (1979) Event-related brain potentials: A tool in the study of human information processing. In: Evoked brain potentials and behavior, ed. Begleiter, H.. New York: Plenum Press. [EC]Google Scholar
Douglas, R. J. (1967) The hippocampus and behavior. Psychological Bulletin 67:416–42. [GH]CrossRefGoogle ScholarPubMed
Dudar, J. D. (1975) The effect of septal nuclei stimulation on the release of Ach from the rabbit hippocampus. Brain Research 83:123–33. [CHV]CrossRefGoogle Scholar
Dudar, J. D.; Whishaw, I. Q. & Szerb, J. C. (1979) Release of acetylcholine from the hippocampus of freely moving rats during sensory stimulation and running. Neuropharmacology 18:673–78. [JCS. CHV]CrossRefGoogle ScholarPubMed
Eccles, J. (1961) Chairman's opening remarks. In: The nature of sleep, ed. Wolstenholme, G. E. W. & O'Connor, M., pp. 13. London: Churchill. [MS]Google Scholar
Edstrom, J. P. & Phillis, J. W. (1980) A cholinergic projection from the globus pallidus to cerebral cortex. Brain Research 189:524–29. [ JWP]CrossRefGoogle ScholarPubMed
Eibl-Eibesfeldt, I. (1970) Ethology: The biology of behavior. New York: Holt, Rinehart and Winston. [CHV]Google Scholar
Eichenbaum, H. B.; Macrides, F. & Shedlack, K. J. (1979) Relationship between hippocampal RSA and sniffing during reversal odor discrimination learning. Neurosciences Abstracts 5:273. [HE, BRK]Google Scholar
Elul, R. (1972) The genesis of the EEG. International Review of Neurobiology 15:227–72. [GGS]CrossRefGoogle Scholar
Emson, P. C. & Lindvall, O. (1979) Distribution of putative neurotransmitters in the neocortex. Neuroscience 4:130. [JCS]CrossRefGoogle ScholarPubMed
Feder, R. & Ranck, J. B. Jr. (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. Part II. Hippocampal slow waves and theta cell firing during bar pressing and other behaviors. Experimental Neurology 41:532–55. [CHV]CrossRefGoogle Scholar
Feldman, S. M. & Waller, H. J. (1962) Dissociation of electrocortical activation and behavioural arousal. Nature 196:1320–22. [CHV]CrossRefGoogle ScholarPubMed
Foote, S. L. & Bloom, F. E. (1979) Activity of norepinephrine-containing locus coeruleus neurons in the unanesthetized squirrel monkey. In: Catecholamines: Clinical basic interactions, Vol. I, ed. Usdin, E., pp. 625–27. New York: Pergamon Press. [MS]CrossRefGoogle Scholar
Foulkes, W. D. (1962) Dream reports from different stages of sleep. Journal of Abnormal and Social Psychology 65:1425. [CHV]CrossRefGoogle ScholarPubMed
Fowles, D. C. (1980) The three arousal model: Implications of Gray's two-factor learning theory for heart rate, electrodermal activity, and psychopathy. Psychophysiology 17:87104. [RBM]CrossRefGoogle ScholarPubMed
Fox, S. E. & Ranck, J. B. (1975) Localization and anatomical identification of theta and complex spike cells in dorsal hippocampal formation of rats. Experimental Neurology 49:299313. [GH]CrossRefGoogle ScholarPubMed
Frederickson, C. J. & Whishaw, I. Q. (1977) Hippocampal EEG during learned and unlearned behavior in the rat. Physiology and Behavior, 18:597603. [CHV]CrossRefGoogle ScholarPubMed
Frederickson, C. J.; Miczek, K. A.; Zurawin, R. A. & Frederickson, M. H. (1977) Hippocampal EEG correlates of intraspecies aggressive behavior in the rat. Brain Behavior and Evolution 14:352–67. [CHV]CrossRefGoogle ScholarPubMed
Fried, P. A. (1972) Septum and behavior: A review. Psychological Bulletin 78:292310. [NRC]CrossRefGoogle ScholarPubMed
Friedman, L. & Jones, B. E. (1981) Computerized classification by cluster analysis of sleep-waking states in the cat. Abstract submitted to: Association for the Psychophysiological Study of Sleep. [BEJ]Google Scholar
Friedman, M. M. & Wikler, A. (1970) The effect of intrahypothalamic microinjection of hemicholinium (HC-3) on the hippocampal theta rhythm of cats. Psychopharmacologia (Berlin) 17:345–53. [CHV]CrossRefGoogle ScholarPubMed
Fujita, Y. & Sato, T. (1974) Intracellular records from hippocampal pyramidal cells in rabbit during theta rhythm activity. Journal of Neurophysiology 27:1011–25. [CHV]CrossRefGoogle Scholar
Funderburk, W. H. & Case, T. J. (1951) The effect of atropine on cortical potentials. Electroencephalography and clinical Neurophysiology 3:213–23. [CHV]CrossRefGoogle ScholarPubMed
Fuxe, K.; Grobecker, H. & Jonsson, J. (1967) The effect of β-phenylethylamine on central and peripheral monamine-containing neurons. European Journal of Pharmacology 2:202–7. [CHV]CrossRefGoogle Scholar
Fuxe, K.; Hökfelt, T. & Ungerstedt, U. (1970) Morphological and functional aspects of central monoamine neurons. International Review of Neuro-Inology 13:93126. [CHV]CrossRefGoogle Scholar
Fuxe, K.; Lidbrink, P.; Hökfelt, T.; Bolme, P. & Goldstein, M. (1974) Effects of piperoxane on sleep and waking in the rat. Evidence for increased waking by blocking inhibitory adrenaline receptors on the locus coeruleus. Acta physiologica Scandinavica, 91:566–67. [CHV]CrossRefGoogle ScholarPubMed
Gastaut, H.; Jus, A.; Jus, C.; Merrell, F.; Storm Van Leeuwen, W.; Dongier, S.; Naquet, R.; Regis, H.; Roger, A.; Bekkering, D.; Kamp, A. & Werre, J. (1957) Etude topographique des réactions électroencéphalographiques conditionnées ehez l'homme. Electroencephalography and Clinical Neurophysiology 30:134. [AR]CrossRefGoogle Scholar
Gault, F. P. & Leaton, R. N. (1963) Electrical activity of the olfactory system. Electroencephalography and Clinical Neurophysiology 15:299304. [GH]CrossRefGoogle ScholarPubMed
George, R.; Haslett, W. & Jenden, D. (1964) A cholinergic mechanism in the brainstem reticular formation: Induction of paradoxical sleep. International Journal of Neuropharmacology, 3:541–52. [PS]CrossRefGoogle ScholarPubMed
Glotzbach, S. F. (1975) Correlation of hippocampal theta activity and movement during slow-wave sleep in cats. Behavioral Biology 15:485–90. [CHV]CrossRefGoogle ScholarPubMed
Goodman, S. J. (1968) Visuo-motor reaction times and brain stem multiple-unit activity. Experimental Neurology 22:367–78. [RBM]CrossRefGoogle ScholarPubMed
Goodman, S. J. & Mann, P. E. G. (1967) Reticular and thalamic multiple unit activity during wakefulness, sleep, and anesthesia. Experimental Neurology 19:1124. [CHV]CrossRefGoogle ScholarPubMed
Gosselin, R. E.; Gabourel, J. D.; Kaiser, S. C. & Wills, J. H. (1955) The metabolism of C14 labelled atropine and tropic acid in mice. Journal of Pharmacology and Experimental Therapeutics 115:217–29. [CHV]Google Scholar
Goltesmann, C. L.; User, P. & Gioanni, H. (1980) Sleep: A physiological "cer-veau isolé" stage. Waiting and Sleeping 4:111–19. [JRV]Google Scholar
Grandstaff, N. W. (1969) Frequency analysis of EEG during milk drinking. Electroencephalography and clinical Neurophysiology 27:5765. [CHV]CrossRefGoogle ScholarPubMed
Graslyán, E.; Karmos, G.; Vereczkey, I., & Kellényi, L. (1966) The hippocampal electrical correlates of the homeostatic regulation of motivation. Electroencephalography and Clinical Neurophysiology 21:3453. [TLB]CrossRefGoogle Scholar
Grastyan, E.; Lissak, K.; Madarasz, I. & Donhoffer, H. (1959) Hippocampal electrical activity during the development of conditioned reflexes. Electroencephalography and Clinical Neurophysiology 11:409–30. [GH]CrossRefGoogle ScholarPubMed
Green, J. D. & Arduini, A. (1954) Hippocampal electrical activity in arousal. Journal of Neurophysiology 17:533–57. [GH, CHV]CrossRefGoogle ScholarPubMed
Grill, H. J. & Norgren, R. (1978) Neurological tests and behavioral deficits in chronic thalamic and chronic decerebrate rats. Brain Research 143:299312. [CHV]CrossRefGoogle ScholarPubMed
Grossman, S. P. (1976) Behavioral functions of the septum: A reanalysis. In: The septal nuclei, ed. De France, J. F., pp. 366422. New York: Plenum Press. [NRC]Google Scholar
Grossman, S. P. (1978) An experimental dissection of the septal syndrome. Ciba Symposium on Functions of the Septo-Hippocampal System 58:227–60. [NRC]CrossRefGoogle Scholar
Hackett, J. T. & Marczynski, T. J. (1969) Postreinforcement electrocortical synchronization and enhancement of cortical photic evoked potentials during instrumentally conditioned appetitive behavior in the cat. Brain Research 15:447–64. [CHV]CrossRefGoogle ScholarPubMed
Halgren, E.; Babb, T. L. & Crandall, P. H. (1978) Human hippocampal formation EEC desynchronizes during attentiveness and movement. Electroencephalography and Clinical Neurophysiology 44:778–81. [RBM]CrossRefGoogle Scholar
Harner, R. & Naquet, R. (1971) Altered states of consciousness, coma, cerebral death. In: Handbook of electroencephalography and clinical neurophysiology, Vol. 12, ed. Remond, A.. Amsterdam: Elsevier Publishing Co. [JRV]Google Scholar
Harper, R. M. (1971) Frequency changes in hippocampal electrical activity during movement and tonic immobility. Physiology and Behavior 7:55–8. [CHV]CrossRefGoogle ScholarPubMed
Hebb, D. O. (1955) Drives and The C.N.S. (Conceptual Nervous System). Psychological Review 62:243–54. [CHV]CrossRefGoogle ScholarPubMed
Hebb, D. O. (1972) Textbook of psychology. Philadelphia: W. B. Saunders Co. [RJS]Google Scholar
Hebb, D. O. (1980) Essay on mind. Hillsdale, New Jersey: Lawrence Erlbaum Associates. [CHV]Google Scholar
Hebb, C. O.; Krnjevié, K. & Silver, A. (1963) Effect of undercutting on the acetylcholinesterase and choline acetyl transferase activity in the cat's cerebral cortex. Nature 198:692. [CHV]CrossRefGoogle Scholar
Hendricks, J. G.; Bowker, R. M. & Morrison, A. R. (1977) Functional characteristics of cats with pontine lesions during sleep and wakefulness and their usefulness for sleep research. European Congress on Sleep Research, 3d, Montpellier, 1976. In: Sleep, 1976; memory, environment, epilepsy, sleep staging, ed. Koella, W. P. & Levin, P., pp. 207–10. Basel, New York, Karger. [CHV]Google Scholar
Hendricks, J. C.; Morrison, A. R. & Mann, G. L. (1980) Pontine tegmental lesions release similar behaviors in both wakefulness and paradoxical sleep. Abstracts, Society for Neuroscience 6:203. [CHV]Google Scholar
Henley, K. & Morrison, A. R. (1974) A re-evaluation of the effects of lesions of the pontine tegmentum and locus coeruleus on phenomena of paradoxical sleep in the cat. Acta Neurobiologica Experimentalis 34:215–32. [CHV]Google ScholarPubMed
Henwood, R. W., Boulton, A. A. & Phillis, J. W. (1979) lontophoretic studies of some trace amines in the mammalian CNS. Brain Research 164:347–51. [JWP]CrossRefGoogle Scholar
Herkenham, M. (1980) Laminar organization of thalamic projections to the rat neocortex. Science 207:532–35. [MS]CrossRefGoogle Scholar
Hess, R. (1964) The electroencephalogram in sleep. Electroencephalography and clinical Neurophysiology 16:4455. [CHV]CrossRefGoogle ScholarPubMed
Hinde, R. A. (1970) Animal behavior: A synthesis of ethology and comparative psychology. 2nd Ed.New York: McGraw-Hill. [CHV]Google Scholar
Hobson, J. A. & McCarley, R. W. (1977) The brain as a dream state generator: An activation-synthesis hypothesis of the dream process. American Journal of Psychiatry 134:1335–48. [PS]Google ScholarPubMed
Hobson, J. A.; McCarley, R. W. & Wyzinski, P. W. (1975) Sleep cycle oscillation: Reciprocal discharge by two brain stem neuronal groups. Science 189:5558. [MS]CrossRefGoogle ScholarPubMed
Hodes, R. (1962) Electrocortical synchronization resulting from reduced proprioceptive drive caused by neuromuscular blocking agents. Electroencephalography and Clinical Neurophysiology, 14:220–32. [CHV]CrossRefGoogle ScholarPubMed
Hoover, D. B.; Muth, E. A. & Jacobowitz, D. M. (1978) A mapping of the distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase in discrete areas of rat brain. Brain Research 153:295306. [CHV]CrossRefGoogle ScholarPubMed
Houston, J. P. & Borbely, A. A. (1974) The thalamic rat: General behavior, operant learning with rewarding hypothalamic stimulation, and effects of amphetamine. Physiology and Behavior 12:433–48. [JRV]CrossRefGoogle Scholar
Hrdina, P. & Ling, C. M. (1973) Effects of desipramine and reserpine on "free" and "bound" acetylcholine in rat brain. Journal of Pharmacy and Pharmacology 25:504–07. [CHV]CrossRefGoogle ScholarPubMed
Hunter, B.; Zornetzer, S. F.; Jarvik, M. E. & McGaugh, J. L. (1977) Modulation of learning and memory: Effects of drugs influencing neurotransmitters. In: Handbook of psychopharmaeology, v. 8 Drugs neurotransmitters and behavior, ed. Iverson, L. L., Iverson, S. D. & Snyder, S. H., pp. 531–77. New York: Plenum Press. [CHV]CrossRefGoogle Scholar
Hyvärinen, J.; Poranen, A. & Jokinen, Y. (1980) Influence of attentive behavior on neuronal responses to vibration in primary somatosensory cortex of the monkey. Journal of Neurophysiology 43:870–82. [MS]CrossRefGoogle ScholarPubMed
Isaacson, R. L. (1974) The limbic system. New York: Plenum Press. [TLB, NRC]CrossRefGoogle Scholar
Jacobowitz, D. M. & Palkovits, M. (1974) Topographical atlas of catecholamine- and acetylcholinesterase-containing neurons in the rat brain. I. Forebrain (telencephalon; diencephalon). Journal of Comparative Neurology 157:1328. [CHV]CrossRefGoogle Scholar
Jacobs, B. L. & Jones, B. E. (1978) The role of central monoamine and acetylcholine systems in sleep-wakefulness states: Mediation or modulation? In: Cholinergic-monoaminergic interactions in the brain, ed. Butcher, L. L., pp. 271–90. New York: Academic Press. [BEJ, CHV]CrossRefGoogle Scholar
Jasper, H. H. (1966) Pathophysiological studies of brain mechanisms in different states of consciousness. In: Brain and conscious experience, ed. Eccles, J. C., pp. 256–82. New York: Springer-Verlag. [HHJ]Google Scholar
Jasper, H. H. & Koyama, I. (1967) Rale of release of acetylcholine and glutamic acid from the cerebral cortex during reticular activation. Federation Proceedings 26:373. [HHJ]Google Scholar
Jasper, H. H. & Krnjevic, K. (1969) Cholinergic mechanisms and amino acids in cortical activation and arousal. American Physiological Society Symposium, "Neurohumoral Aspects of Sleep and Wakefulness," Atlantic City. [HHJ]Google Scholar
Jasper, H. H. & Penfield, W. (1949) Electrocorticograms in man: Effect of voluntary movement upon the electrical activity of the precentral gyrus. Archives of Psychiatry and Neurology 183:163–74. [AR]Google Scholar
Jasper, H. H. & Tessier, J. (1971) Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep. Science 172:601–02. [HHJ, CHV]CrossRefGoogle ScholarPubMed
Jones, B. E. & Friedman, L. (1981) Disruption of the sleep-waking cycle following large lesions of the pontine gigantocellular tegmental field in the cat. Abstract submitted to: Association for the Psychophysiological Study of Sleep. [BEJ]Google Scholar
Jones, B. E.; Bobillier, P. & Jouvet, M. (1969) Effets de la destruction des neurones contenant des catécholamines du mésencéphale sur le cycle veille-sommeils du chat. Comptes Rendus des Séances de la Societe de Biologie, 163:176–80. [CHV]Google Scholar
Jones, B. E.; Bobillier, P.; Pin, C. & Jouvet, M. (1973) The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in thecal. Brain Research 58:157–77. [BEJ]CrossRefGoogle Scholar
Jones, B. E.; Harper, S. T. & Halaris, A. E. (1977) Effect of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness stales and the response to amphetamine in the cat. Brain Research 124:473–96. [CHV]CrossRefGoogle Scholar
Jouvet, M. (1962) Recherches sur les structures nerveuses et les méchanismes responsables des différentes phases du sommeil physiologique. Archives Italiennes de Biologic 100:125206. [JRV]Google Scholar
Jouvet, M. (1967) Mechanisms of the states of sleep: A neuropharmacological approach. In: Sleep and altered states of consciousness. Research Publications: Association for Research in Nervous and Mental Disease, ed. Kety, S. S.; Evarts, E. V. and Williams, H. L., Vol. 45, pp. 86126. Baltimore: Williams and Wilkins. [CHV]Google Scholar
Jouvet, M. (1972) The role of monoamines and acetylcholine containing neurons in the regulation of the sleep waking cycle. Ergebnisse der Physiologic 64:166307. [CHV]Google ScholarPubMed
Jouvet, M. (1974) The role of monoaminergic neurons in the regulation and function of sleep. In: Basic sleep mechanisms, eds. Petre-Quadens, O. & Schag, J. D., pp. 207–32. New York: Academic Press. [CHV]Google Scholar
Jouvet, M. (1977) Neuropharmacology of the sleep-waking cycle. In: Handbook of Psy-chopharmacology, v. 8. Drugs. Neurotransmitters and Behavior, ed. Iverson, L. L.; Iverson, S. D. & Snyder, S. H., pp. 233–93. New York: Plenum Press. [CHV]CrossRefGoogle Scholar
Jouvet, M. & Delorme, F. (1965) Locus coeruleus et sommeil paradoxal. Comptes Rendus de la Societe de Biologie (Paris) 159:895–99. [CHV]Google Scholar
Kales, A.; Bixler, E. & Kales, J. (1974) Role of the sleep research and treatment facility: Diagnosis, treatment and education. Advances in Steep Research 1:391415. [JRV]Google Scholar
Kanai, T. & Szerb, J. C. (1965) Mesencephalic reticular activating system and cortical acetylcholine output. Nature 205:8082. [CHV]CrossRefGoogle ScholarPubMed
Kandel, E. R. (1979) Simple forms of modulation: Attention, arousal and sensitization. Introduction. Neuroscicnces Research Program Bulletin 17:539–41. [CHV]Google Scholar
Kawamura, H. & Oshima, K. (1962) Effect of adrenaline on the hypothalamic activating system. Japanese Journal of Physiology 12:225–33. [CHV]Google ScholarPubMed
Kemp, I. R. & Kaada, B. R. (1975) The relation of hippocampal theta activity to arousal, attentive behavior, and somato-motor movements in unrestrained eats. Brain Research 95:323–42. [TLB, JRV, CHV]CrossRefGoogle Scholar
Kimble, D. P. (1968) Hippocampus and internal inhibition. Psychological Bulletin 70:285–95. [GH]CrossRefGoogle ScholarPubMed
Kimura, D. (1962) Multiple response of visual cortex of the rat to photic stimulation. Electroencephalography and clinical Neurophysiology 14:115–22. [CHV]CrossRefGoogle ScholarPubMed
Kimura, H.; McGeer, P. L.; Peng, F. & McGeer, E. G. (1980) Choline acetyl-transferace-containing neurons in rodent brain demonstrated by immuno-histochemistry. Science 208:1057–59. [CHV]CrossRefGoogle Scholar
Kirschner, N. (1962) Uptake of catecholamines by a particulate fraction of the adrenal medulla. Journal of Biological Chemistry 237:2311–17. [CHV]CrossRefGoogle Scholar
Klatzky, R. L. (1980) Human memory structures and processes. New York: W. H. Freeman & Co. [EC]Google Scholar
Klemm, W. R. (1971) EEG and multiple-unit activity in limbic and motor systems during movement and immobility. Physiology and Behavior 7:337–43. [RBM]CrossRefGoogle ScholarPubMed
Klemm, W. R. (1976) Physiological and behavioral significance of hippocampal rhythmic slow activity ("theta rhythm"). Progress in Neurobiology 6:2347. [CHV, OSV]CrossRefGoogle ScholarPubMed
Klingberg, F. (1971) Hypersynchrony and learning. In: Biology of memory, ed. Ádám, C., pp. 299305. New York: Plenum Press. [CHV]CrossRefGoogle Scholar
Knock, H. L. (1965) The fibre-connections of the forebrain. Assen: Van Gorcum & Comp., N. V. [CHV]Google Scholar
Kobayashi, R. M.; Palkovits, M.; Kopin, I. J. & Jacobowitz, D. M. (1974) Biochemical mapping of noradrenergic nerves arising from the rat locus coeruleus. Brain Research, 77:269–79. [CHV]CrossRefGoogle ScholarPubMed
Kolb, B. & Whishaw, I. Q. (1977) Effects of brain lesions and atropine on hippocampal and neocortical electroencephalograms in the rat. Experimental Neurology, 56:122. [CHV]CrossRefGoogle ScholarPubMed
Kolb, B. & Whishaw, I. Q. (1978) Decortication? Was Flourens correct? Society for Neuroscience Abstracts 4:76. [RJS]Google Scholar
Kolb, B. & Whishaw, I. Q. (1980) Fundamentals of human neuropsychology. San Francisco: W. H. Freeman and Co. [RJS]Google Scholar
Komisaruk, B. R. (1970) Synchrony between limbic system theta activity and rhythmical behavior in rats. Journal of Comparative and Physiological Psychology 70:482–92. [GH, BRK]CrossRefGoogle ScholarPubMed
Komisaruk, B. R. (1973) Hypothalamic influences on motor patterns. Neurosciences Research Program Bulletin 11:376–81. [BRK]Google Scholar
Komisaruk, B. R. (1977) The role of rhythmical brain activity in sensorimotor integration. Progress in Psychobiology and Physiological Psychology 7:5590. [BRK]Google Scholar
Kopin, I. J. (1972) Metabolic degradation of catecholamines. The relative importance of different pathways under physiological conditions and after the administration of drugs. In: Handbook of experimental pharmacology, v.33, Catecholamines, ed. Blaschko, H. & Muscholl, E., pp. 270–82. New York: Springer-Verlag. [CHV]Google Scholar
Kramis, R. & Vanderwolf, C. H. (1980) Frequency-specific RSA-like hippocampal patterns elicited by septal, hypothalamic, and brain stem electrical stimulation. Brain Research 192:383–98. [CHV]CrossRefGoogle ScholarPubMed
Kramis, R.; Vanderwolf, C. H. & Bland, B. H. (1975) Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethyl ether, urethane and pentobarbital. Experimental Neurology 49:5885. [CHV]CrossRefGoogle ScholarPubMed
Krnjević, K. (1974) Chemical nature of synaptic transmission in vertebrates. Physiological Reviews 54:418540. [CHV]CrossRefGoogle Scholar
Krnjević, K. (1977) Effects of substance P on central neurones in cats. In: Substancc P, ed. von Euler, U.S., pp. 217–30. New York: Raven Press. [KK]Google ScholarPubMed
Krnjević, K. & Phillis, J. W. (1963a) Acetylcholine-sensitive cells in the cerebral cortex. Journal of Physiology (London) 166:296327. [CHV]CrossRefGoogle ScholarPubMed
Krnjević, K. & Phillis, J. W. (1963b) Pharmacological properties of acetylcholine sensitive cells in the cerebral cortex. Journal of Physiology (London), 166:328–50. [CHV]CrossRefGoogle ScholarPubMed
Krnjević, K.; Pumain, R. & Renaud, L. (1971) The mechanism of excitation by acetylcholine in the cerebral cortex. Journal of Physiology 215:247–68. [KK]CrossRefGoogle ScholarPubMed
Krnjević, K.; Reiffenstein, R. J. & Ropert, N. (1980) Disinhibitory action of acetylcholine in the hippocampus. Journal of Physiology 308:7374P. [KK]Google Scholar
Krnjević, K.; Reiffenstein, R. J. & Ropert, N. (1981) Disinhibitory action of acetylcholine in the rat's hippocampus: Extracellular observations. Neuroscience. In Press. [KK]CrossRefGoogle ScholarPubMed
Kuhar, M. J. (1975) Cholinergic neurons: Septal hippocampal relationships. In: The Hippocampus: Structure and development, ed. Isaacson, R. L. & Pribram, K. H., Vol. I, pp. 269–83. Plenum: New York. [CHV]CrossRefGoogle Scholar
Kuhar, M. J.; Sethy, V. H.; Roth, R. H. & Aghajanian, G. K. (1973) Choline: Selective accumulation by central cholinergic neurons. Journal of Neuro-chemistry 20:581–93. [CHV]CrossRefGoogle ScholarPubMed
Kuhlman, W. (1978) Functional topography of the human mu rhythm. Electroencephalography and Clinical Neurophysiology 440:8393. [AR]CrossRefGoogle Scholar
Kuypers, H. G. J. M. (1964) The descending pathways to the spinal cord, their anatomy and function. Progress in Brain Research 11:178202. [CHV]CrossRefGoogle Scholar
Larsson, L. E. (1960) Correlation between the psychological significance of stimuli and the magnitudes of the startle blink and evoked EEC potentials in man. Acta physiologica Scandinavica 48:276–94. [CHV]CrossRefGoogle Scholar
Lashley, K. S. (1929) Brain mechanisms and intelligence. Chicago: University of Chicago Press. [CHV]Google Scholar
Lashley, K. S. (1935) Studies of cerebral function in learning XI. The behavior of the rat in latch box situations. Comparative Psychology Monographs XI (#2), 142. [CHV]Google Scholar
Lehmann, J.; Nagy, J. I.; Atmadja, S. & Fibiger, H. C. (1980) The nucleus ba-salis magnocellularis: The origin of a cholinergic projection to the neucortex of the rat. Neuroscience 5:1161–74. [JCS]CrossRefGoogle Scholar
Leung, L. S. (1980) Behavior-dependent evoked potentials in the hippocampal CA 1 region of the rat. I. Correlation with behavior and EEG. Brain Research 198:95117. [CHV]CrossRefGoogle Scholar
Leung, L. S. & Vanderwolf, C. H. (1980) Behavior-dependent evoked potentials in the hippocampal CA1 region of the rat. H. Effect of eserine, atropine, ether and pentobarbital. Brain Research 198:119–33. [CHV]CrossRefGoogle Scholar
Lewis, P. R. & Shute, C. C. D. (1967) The cholinergic limbic system: Projection to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain 90:521–40. [CHV]CrossRefGoogle ScholarPubMed
Lewis, P. R. & Shute, C. C. D. (1978) Cholinergic pathways in CNS. In: Handbook of Psychopharmacology, v. 9, Chemical pathways in the brain, ed. Iverson, L. L.; Iverson, S. D. & Snyder, S. H., pp. 315–55. New York: Plenum Press. [CHV]CrossRefGoogle Scholar
Lewis, P. R.; Shute, C. C. D. & Silver, A. (1967) Confirmation from choline acetylase analyses of massive cholinergic innervation to the rat hippocampus. Journal of Physiology (London) 191:215–24. [CHV]CrossRefGoogle Scholar
Lewis, M.; Wamsley, J. K.; Young, W. S. & Kuhar, M. J. (1980) Autoradiographic localization of muscarinic cholinergic receptors in rat brain stem. Society for Neuroscience Abstracts 6:515. [PS]Google Scholar
Li, C.-L. & Jasper, H. (1953) Microelectrode studies of electrical activity of cerebral cortex in the cat. Journal of Physiology 121:117–40. [GH]CrossRefGoogle ScholarPubMed
Lidbrink, P. (1974) The effect of lesions of ascending noradrenaline pathways on sleep and waking in the rat. Brain Research 74:1940. [CHV]CrossRefGoogle ScholarPubMed
Lidsky, T. I.; Levine, M. S. & MacGregor, S. (1974) Hippocampal units during orienting and arousal in rabbits. Experimental Neurology 44:171–86. [CH]CrossRefGoogle ScholarPubMed
Lindevall, O. & Björklund, A. (1978) Organization of catecholamine neurons in the rat central nervous system. In: Handbook of psychopharmacology, v. 9, Chemical pathways in the brain, ed. Iverson, L. L., Iverson, S. D. & Snyder, S. H., pp. 139231. New York: Plenum Press. [CHV]CrossRefGoogle Scholar
Lindsley, D. B. (1951) Emotion. In: Handbook of experimental psychology, ed. Stevens, S. S., pp. 473516. New York: Wiley. [CHV]\Google Scholar
Lindsley, D. B. (1960) Attention, consciousness, sleep and wakefulness. In: Handbook of Physiology. Section I: Neurophysiology, v. 3., ed. Field, J.; Magoun, H. W. & Hall, V. E., pp. 1553–93. Washington, DC: American Physiological Society. [CHV]Google Scholar
Lippold, O.C.J. (1973) The origin of the alpha rhythm. London: Churchill Livingston. [CH]Google Scholar
Loeb, C.; Rosadini, G. & Poggio, G. F. (1959) Electroencephalograms during coma: Normal and borderline records in 5 patients. Neurology 9:610–18. [CHV]CrossRefGoogle ScholarPubMed
Longo, V. G. (1971) Effects of drugs on the EEG. In: Handbook of electroencephalography and clinical neurophysiology. Vol. 7 (pt. C), ed. Remond, A.. Amsterdam: Elsevier Publishing Co. [JRV]Google Scholar
Longo, V. G. (1962) Rabbit brain research, v. 2. Amsterdam: Elsevier. [CHV]Google Scholar
Longo, V. G. (1966) Behavioral and electroecephalographic effects of atropine and related compounds. Pharmacological Review 18:965–96. [CHV]Google Scholar
Longo, V. G. & Silvestrini, G. (1957) Action of eserine and amphetamine on the electrical activity of rabbit brain. Journal of Pharmacology and Experimental Therapeutics 120:160–70. [CHV]Google ScholarPubMed
Lorenz, K. Z. (1973) The fashionable fallacy of dispensing with description. Die Naturwissenschaften 60:19. [CHV]CrossRefGoogle Scholar
Luciani, L. (1915) Human physiology. London: Macmillan and Co., Ltd. [RJS]Google Scholar
Oakley, D. A. (1979) Neocortex and learning. Trends in NeuroSciences 2:149–52. [RJS]CrossRefGoogle Scholar
Lynch, G. & Cotman, C. W. (1975) The hippocampus as a model for studying anatomical plasticity in the adult brain. In: The hippocampus, Vol. I: Structure and development, ed. Isaacson, R. L. & Pribram, K. H., pp. 123–54. New York: Plenum Press. [CHV]CrossRefGoogle Scholar
Macadar, A. W.; Chalupa, L. M. & Lindsley, D. B. (1974) Differentiation of brainstem loci which affect hippocampal and neocortical electrical activity. Experimental Neurology 43:499514. [CH, CHV]CrossRefGoogle ScholarPubMed
Macrides, F. (1975) Temporal relationships between hippocampal slow waves and exploratory sniffing in hamsters. Behavioral Biology 14:295308. [HE, GH, BRK]CrossRefGoogle ScholarPubMed
Magoun, H. W. (1954) The ascending reticular system and wakefulness. In: Brain mechanism and consciousness, ed. Delafresnaye, J. F., pp. 153. Oxford: Blackwell Scientific Publications. [JRV]Google Scholar
Malhotra, C. L. & Pundlik, P. G. (1959) The effect of reserpine on the acetylcholine content of different areas of the central nervous system of the dog. British Journal of Pharmacology and Chemotherapy 14:4650. [CHV]CrossRefGoogle ScholarPubMed
Malmo, R. B. (1959) Activation: A neuropsychological dimension. Psychological Review 66:367–86. [CHV]CrossRefGoogle ScholarPubMed
Malmo, R. B. (1965) Physiological gradients and behavior. Psychological Bulletin 64:225–34. [RBM]CrossRefGoogle ScholarPubMed
Malmo, R. B. & Bélanger, D. (1967) Related physiological and behavioral changes: What are their determinants? Sleep and altered states of consciousness. Research Publications: Association for Research in Nervous and Mental Disease, Baltimore: Williams & Wilkins, 45:288313. [CHV]Google Scholar
Malmo, H. P. & Malmo, R. B. (1977) Movement-related forebrain and midbrain multiple unit activity in rats. Electroencephalography and Clinical Neurophysiology 42:501–09. [RBM]CrossRefGoogle ScholarPubMed
Mantegazzini, P.; Poeck, K. & Santibañez, G. (1959) The action of adrenalin and nor-adrenaline on the cortical electrical activity of the éncephalé isolé cat. Archives italiennes de Biologic 97:222–42. [GHV]Google Scholar
Marczynski, T. J. & Hackett, J. T. (1969) Postreinforcement eleetrocortical synchronization and facilitation of cortical somato-sensory evoked potentials in appetitive behavior in the cat. Electroencephalography and clinical Neurophysiology 26:41–9. [CHV]CrossRefGoogle ScholarPubMed
Marczynski, T. J.; Rosen, A. J. & Hackett, J. T. (1968) Postreinforcement electro-cortical synchronization and facilitation of cortical auditory evoked potentials in appetitive instrumental conditioning. Electroencephalography and clinical Neurophysiology 24:227–41. [CHV]CrossRefGoogle Scholar
Massopust, L. C. Jr; White, R. J.; Albin, M. S.; Yashoun, D. & Talitz, N. (1968) Electrical activity of the isolated macaque brain. Experimental Neurology 22:303–25. [JRV]CrossRefGoogle ScholarPubMed
Mays, L. E. & Best, P. J. (1975) Hippocampal unit activity to tonal stimuli during arousal from sleep and in awake rats. Experimental Neurology 47:268–79. [GH]CrossRefGoogle ScholarPubMed
McLennan, H. & Miller, J. J. (1976) Frequency-related inhibitory mechanisms controlling rhythmical activity in the septal area. Journal of Physiology 254:827–41. [JCS]CrossRefGoogle ScholarPubMed
McGinty, D. J. (1973) Neurochemically defined neurons: Behavioral correlates of unit activity of serotonin-containing cells. In: Rrain unit activity during behavior, ed. Phillips, M. I., pp. 244287. Springfield, Illinois: Ch. C. Thomas. [MS]Google Scholar
McLean, J. P. & Shulman, G. L. (1978) On the construction and maintenance of expectancies. Quarterly Journal of Experimental Psychology 30:441–54. [EC]CrossRefGoogle Scholar
Melamed, E.; Lahav, M. & Atlas, D. (1977) β-Adrenergic receptors in rat cerebral cortex: Histochemical localization by a fluorescent β-blocker. Brain Research 128:379–84. [CHV]CrossRefGoogle ScholarPubMed
Mercer, L. F.; Remley, N. R. & Gilman, D. P. (1978) Effects of methane on hippocampal unit activity in the rat. Brain Research Bulletin 3:567–70. [GH]CrossRefGoogle Scholar
Miller, R. F.; Stavraky, G. W. & Woonton, G. A. (1940) The effects of eserine, acetylcholine, and atropine on the electrocorticogram. Journal of Neurophysiology 3:131–38. [JCS, CHV]CrossRefGoogle Scholar
Miller, S. W. & Groves, P. M. (1977) Sensory evoked neuronal activity in the hippocampus before and after lesions of the medial septal nuclei. Physiology and Behavior 18:141–46. [GH]CrossRefGoogle ScholarPubMed
Mink, W. D.; Best, P. J. & Olds, J. (1967) Neurons in paradoxical sleep and motivated behavior. Science 158:1335–37. [GH]CrossRefGoogle ScholarPubMed
Mirsky, A. F. & Pragay, E. B. (1967) The relation of EEG and performance in altered states of consciousness. Research Publications, Association for Research in Nervous and Mental Disease 45:514–34. [CHV]Google ScholarPubMed
Monmaur, P.; Houcine, O. & Delacour, J. (1979) Experimental dissociation between wakefulness and paradoxical sleep hippocampal theta. Physiology and Behavior 23:471–79. [CHV]CrossRefGoogle ScholarPubMed
Monnier, M. & Romanowski, W. (1961) Les systèmes cholinoceptifs cérébraux - actions de l'acetylcholine, de la physostigmine, pilocarpine et de GABA. Electroencephalography and clinical Neurophysiology 14:486500. [CHV]CrossRefGoogle Scholar
Montplaisir, J. Y. (1975) Cholinergic mechanisms involved in cortical activation during arousal. Electroencephalography and clinical Neurophysiology 38:263–72. [CHV]CrossRefGoogle ScholarPubMed
Moore, R. Y. (1975) Monamine neurons innervating the hippocampal formation and septum: Organization and response to injury. In: The hippocampus, vol. 1, Structure and development, ed. Isaacson, R. L. & Pribram, K. H., pp. 215237. New York: Plenum Press. [CHV]CrossRefGoogle Scholar
Morris, R. G. M. & Black, A. H. (1978) Hippocampal electrical activity and behavior elicited by nonreward. Behavioral Biology 22:524–32. [CHV]CrossRefGoogle ScholarPubMed
Morrison, A. R. (1979) Relationship between phenomena of paradoxical asleep and their counterparts in wakefulness. Acta Neurobiologiac Experimentalis 39:567–83. [OSV]Google Scholar
Moruzzi, G. (1972) The sleep-waking cycle. Ergebnisse der Physiologic 64:1165. [JRV]Google ScholarPubMed
Moruzzi, G. (1972) The sleep-waking cycle. Ergebnissc der Physiologic 64:1165. [CHV, JHV]Google ScholarPubMed
Moruzzi, G. (1974) Neural mechanisms of the sleep-waking cycle. In: Basic sleep mechanisms, ed. Petre-Quadens, O. & Schlag, J. D., pp. 1331. New York and London: Academic Press. [JRV]Google Scholar
Moruzzi, G. & Magoun, H. W. (1949) Brainstem reticular formation and activation of the EEG. Electroencephalography and clinical Neurophysiology 1:455–73. [CHV]CrossRefGoogle ScholarPubMed
Mosnaim, A. D. & Wolf, M. E. (1978) Noncatecholic phenylethylamines. Part I. Phcnylethylaminc: Biological mechanisms and clinical aspects. New York: Marcel Dekker. Inc. [CHV]Google Scholar
Mulholland, T. B. (1969) The concept of attention and the electroencephalo-graphic alpha rhylhm. In: Attention in neurophysiology, ed. Evans, C. R. & Mulholland, T. B., pp. 100–27. London: Butterworths. [CHV]Google Scholar
Mullin, W. J. & Phillis, J. W. (1975) The effect of graded forelimb afferent volleys on acetylcholine release from cat sensorimotor cortex. Journal of Physiology (London) 244:741–56. [ JWP]CrossRefGoogle ScholarPubMed
Mundl, W. J. & Malmo, H. P. (1979) An accelerometer for recording head movement of laboratory animals. Physiology and Behavior 23:391–93. [RBM]CrossRefGoogle ScholarPubMed
Naneishvili, T. L.; Bakuradze, A. N.; Noselidze, A. G., Aragveli, R. I. & Dash-niani, M. G. (1975a) Electrical activity of the cat neocortex after premes-encephalic transection of the brain stem in chronic experiments. Fibrio-logicheskii Zhurnal SSSR imeni I.M. Sechenova (Moskva) 61:1273–80. [JRV]Google Scholar
Naneishvili, T. L.; Bakuradze, A. N.; Noselidize, A. G. & Dashniani, M. G. (1975b) The role of the posterior hypothalamus in the activation of neocortex in the chronic premesencephalic cats. Izvestiia Akademii Nauk SSSR.. Biological Series 1:215–16. [JRV]Google Scholar
Noda, H.; Manohar, S. & Adey, W. R. (1969) Spontaneous aclivily of cat hippocampal neurons in sleep and wakefulness. Experimental Neurology 24:217–31. [GH]CrossRefGoogle ScholarPubMed
O'Keefe, J. (1976) Place units in the hippocampus of the freely moving rat. Experimental Neurology 51:78109. [HE]CrossRefGoogle ScholarPubMed
O'Keefe, J. & Dostrovsky, J. (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely moving rat. Brain Research 34:171 75. [GH]CrossRefGoogle ScholarPubMed
O'Keefe, J. & Nadel, L. (1978) The hippocampus as a cognitive map. Oxford: Clarendon Press. [CHV]Google Scholar
O'Keefe, J. & Nadel, L. (1979) Précis of O'Keefe & Nadel's The hippocampus as a cognitive map. The Behavioral and Brain Sciences 2:487533. [RBM]CrossRefGoogle Scholar
Olmslead, C. E. & Villablanca, J. R. (1977) Hippocampal theta rhythm persists in the permanently isolated forebrain of the cat. Brain Research Bulletin 2:93100. [GB, JRV]CrossRefGoogle Scholar
Ott, T.; Malisch, R. & Krug, M. (1977) Pharmacological analysis of hippocampal "theta rhythm." Acta Neurobiologica Experimentalis 36:720. [CHV]Google Scholar
Parmeggiani, P. L.; Azzaroni, A. & Lenzi, P. (1967) On the functional significance of the hippocampal theta-rhylhm. In: Structure and function of the limbic system. Progress in brain research. Vol. 24, ed. Adey, W. R. & Tokizane, T., pp. 413–41. Amsterdam: Elsevier Publishing Co. [JRV]CrossRefGoogle Scholar
Penfield, W. & Jasper, H. (1954) Epilepsy and the functional anatomy of the human brain, p. 188. Boston: Little, Brown & Co. [CHV]Google Scholar
Pepeu, G. & Bartolini, A. (1968) Effect of psychoactive drugs on the output of acetylcholine from the cerebral cortex of the cal. European Journal of Pharmacology 4:254–63. [CHV]CrossRefGoogle Scholar
Pepeu, G.; Mantovani, P. & Pedata, F. (1978) Drug stimulation of acetylcholine output from the cerebral cortex. In: Cholinergic mechanisms and psychopharmacology. ed. Jenden, D. J., pp. 605614. New York: Plenum Press. [CHV]CrossRefGoogle Scholar
Perry, E. K.; Perry, R.; Blessed, G. & Tomlinson, B. (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 01 22, p. 189. [CHV]CrossRefGoogle Scholar
Perry, E. K.; Perry, R. H.; Gibson, P. H.; Blessed, G. & Tomlinson, B. E. (1977) A cholinergic connection between normal aging and senile dementia in the human hippocampus. Neuroscience Letters 6:85–9. [CHV]CrossRefGoogle ScholarPubMed
Perry, E. K.; Tomlinson, B. K.; Blessed, G.; Bergman, K.; Gibson, P. H. & Perry, R. H. (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. British Medical Journal 2:1457–9. [CHV]CrossRefGoogle ScholarPubMed
Petsche, H.; Slumpf, Ch. & Gogolak, G. (1962). The significance of the rabbit's septum as a relay station between the midbrain and the hippocampus. I. The control of hippocampus arousal activity by the septum cells. Electroencephalography and Clinical Neurophysiology 14:202–11. [JCS]CrossRefGoogle ScholarPubMed
Phillis, J. W. (1968) Acetylcboline release from the cerebral cortex: Its role in cortical arousal. Brain Research 7:378–89. [JWP, CHV]CrossRefGoogle Scholar
Phillis, J. W. (1974) Evidence for cholinergic transmission in the cerebral cortex. Advances in Behavioral Biology 10:5777. [JWP]CrossRefGoogle Scholar
Phillis, J. W. (1974) Evidence for cholinergic transmission in the cerebral cortex. In: Neu-rohumoral coding of brain function, ed. Myers, R. D. & Drucker-Colin, R. R., pp. 5777. New York: Plenum. [CHV]CrossRefGoogle Scholar
Phillis, J. W. (1976) Acetylcholine and synaptic transmission in the central nervous system. In: Chemical transmission in the mammalian central nervous system, ed. Hockman, C. H. & Bieger, D., pp. 159213. Baltimore: University Park Press. [CHV]Google Scholar
Phillis, J. W. & Jhamandas, K. (1971) The effects of chlorpromazine and ethanol on in vivo release of acetylcholine from the cerebral cortex. Comparative and General Pharmacology 2:306. [CHV]CrossRefGoogle ScholarPubMed
Phillis, J. W. & Kirkpatrick, J. R. (1980) The actions of motilin, luteinizing hormone, releasing hormone, cholecystokinin, somatostatin, vasoactive intestinal peptide, and other peptides on rat cerebral cortical neurons. Canadian Journal of Physiology and Pharmacology 58:612–23. [JWP]CrossRefGoogle ScholarPubMed
Phillis, J. W. & Kostopoulos, G. K. (1977) Activation of a noradrenergic pathway from the brain stem to rat cerebral cortex. General Pharmacology 8:207–11. [MS]CrossRefGoogle ScholarPubMed
Phillis, J. W. & York, D. H. (1968) Pharmacological studies on a cholinergic inhibition in the cerebral cortex. Brain Research 10:297306. [JWP]CrossRefGoogle ScholarPubMed
Pickenhain, L. & Klingberg, F. (1965) Behavioural and electrophysiological changes during avoidance conditioning to light flashes in the rat. Electroencephalography and clinical Neurophysiology 18:464–76. [CHV]CrossRefGoogle ScholarPubMed
Pompeiano, O. (1967) The neurophysiological mechanisms of the postural and motor events during desynchronized sleep. Research Publications. Association for Research in Nervous and Mental Disease 45:351423. [CHV]Google Scholar
Pompeiano, O. (1973) Reticular Formation. In: Handbook of sensory physiology, vol. 2, ed. Iggo, A., pp. 381488. Berlin: Springer-Verlag. [JWP]Google Scholar
Posner, M. I. (1978) Chronometric explorations of mind. Hillsdale, N.J.: Lawrence Erlbaum Associates, Inc. [EC]Google Scholar
Potkin, S. G.; Karoum, F.; Chuang, L. W.; Cannon-Spoor, H. E.; Philips, I. & Wyatt, R. J. (1979) Phenylethylamine in paranoid chronic schizophrenia. Science, 206:470–71. [CHV]CrossRefGoogle ScholarPubMed
Pribram, K. H. (1977) Modes of central processing in human learning and remembering. In: Brain and learning, ed. Teyler, T. H.. Connecticut: Greylock Publishers. [EC]Google Scholar
Pribram, K. H. & McGuinness, D. (1975) Arousal, activation, and effort in the control of attention. Psychological Review 82:116–49. [RBM]CrossRefGoogle ScholarPubMed
Babbitt, P. (1979) Some experiments and a model for changes in attentional selectivity with old age. Bayer-symposium VII brain function in old age. pp. 8294, New York: Springer-Verlag, Inc. [EC]Google Scholar
Racine, R.; Tuff, L. & Zaide, J. (1975) Kindling, unit discharge patterns and neural plasticity. Canadian Journal of Neurological Sciences, 2:395405. [CHV]CrossRefGoogle ScholarPubMed
Radii-Weiss, T.; Zernicki, B. & Michalski, A. (1976) Hippocampal theta activity in acute pretrigeminal cat. Acta Neurobiologic Experimentalis 36:517–34. [GB]Google Scholar
Ramm, P. (1979) The locus coeruleus, catecholamines and REM sleep: A critical review. Behavioral and Neural Biology 25:415–48. [CHV]CrossRefGoogle ScholarPubMed
Ranck, J. B. (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. Part I. Behavioral correlates and firing repertoire. Experimental Neurology 40:461555. [GH, CHV]Google Scholar
Ranck, J. B. (1973) Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. Part I. Behavioral correlates and firing repertoires. Experimental Neurology 41:461531. [HE, CHV]CrossRefGoogle Scholar
Ranck, J. B. (1975) Behavioral correlates and firing repertoires of neurons in the dorsal hippocampal formation and septum of unrestrained rats. In: The hippocampus: Vol. 2: Neurophysiology and behavior, ed. Isaacson, R. L. & Pribram, K. H., pp. 207–44. New York: Plenum. [PS, CHV]CrossRefGoogle Scholar
Ratliff, F. (1962) Some interrelations among physics, physiology, and psychology in the study of vision. In: Psychology: A study of science. Study II. Empirical substructure and relations with other sciences, vol. 4: Biologically oriented fields: Their place in psychology and biological science, ed. Koch, S., pp. 417–82. New York: McGraw-Hill. [CHV]Google Scholar
Reader, T.; Ferron, A.; Descarries, L. & Hasper, H. (1979) Modulatory role for biogenic amines in the cerebral cortex. Microiontophoretic studies. Brain Research 160:217–29. [HHJ]CrossRefGoogle ScholarPubMed
Reinstein, D. K.; Hannigan, J. H. Jr & Isaacson, R. L. (1981) Behavioral changes after hippocampal destruction involve forebrain dopaminergic systems. Submitted. [GB]Google Scholar
Reisine, T. D.; Yamamura, H. I.; Bird, E. D.; Spokes, E. & Enna, S. J. (1978) Pre- and postsynaptic neurochemical alterations in Alzheimer's disease. Brain Research 159:477–81. [CHV]CrossRefGoogle ScholarPubMed
Richter, C. P. (1967) Sleep and activity: Their relation to the 24-hour clock. Research Publications, Association for Research in Nervous and Mental Disease 45:827. [CHV]Google Scholar
Rinaldi, F. & Himwich, H. E. (1955) Alerting response and actions of atropine and cholinergic drugs. Archives of Neurology and Psychiatry (Chicago) 73:387–95. (CHV]CrossRefGoogle ScholarPubMed
Robinson, T. E. (1980) Hippocampal rhythmical slow activity (RSA; theta): A critical analysis of selected studies and discussion of possible species-differences. Brain Research Reviews 2:69101. [CHV]CrossRefGoogle Scholar
Robinson, T. E. & Green, D. G. (1980) Effects of hemicholinium-3 and choline on hippocampal electrical activity during immobility vs movement. Electroencephalography and clinical Neurophysiology 50:314–23. [CHV]CrossRefGoogle ScholarPubMed
Robinson, T. E. & Winshaw, I. Q. (1974). Effects of posterior hypothalamic lesions on voluntary behavior and hippocampal electroencephalograms in the rat. Journal of Comparative and Physiological Psychology 86:768–86. [RPV]CrossRefGoogle ScholarPubMed
Robinson, T. E.; Kramis, R. C. & Vanderwolf, C. H. (1977) Two types of cerebral activation during active sleep: Relations to behavior. Brain Research 124:544–9. [CHV]CrossRefGoogle ScholarPubMed
Robinson, T. E. & Vanderwolf, C. H. (1978) Electrical stimulation of the brain stem in freely moving rats. II. Effects on hippocampal and neocortical electrical activity and relations to behavior. Experimental Neurology 61:485515. [CHV, RPV]CrossRefGoogle ScholarPubMed
Robinson, T. E.; Vanderwolf, C. H. & Pappas, B. A. (1977) Are the dorsal noradrenergic bundle projections from the locus coeruleus important for neocortical or hippocampal activation? Brain Research 8:7598. [GH, CHV]CrossRefGoogle Scholar
Rommelspacher, H. & Kuhar, M. J. (1974) Effects of electrical stimulation on acetylcholine levels in central cholinergic nerve terminals. Brain Research 81:243–51. [CHV]CrossRefGoogle ScholarPubMed
Ropert, N.; Ben-Ari, Y.; Krnjević, K. & Polc, P. (1980) Septo-hippocampal pathway and cholinergic disinhibition of pyramidal cells. Canada Physiology 11:118. [KK]Google Scholar
Rossi, G. F. (1980) Neural regulation of sleep. Experientia 36:1920. [JRV]CrossRefGoogle ScholarPubMed
Rossi, G. F. & Zanchetti, A. (1957) Brain stem reticular formation: Anatomy and physiology. Archives Italiennes de Biologic 95:199435. [CHV]Google Scholar
Rossi, G. F. & Zirondoli, A. (1955) On the mechanism of the cortical desynchronization elicited by volatile anaesthetics. Electroencephalography and clinical Neurophysiology 7:383–90. [CHV]CrossRefGoogle Scholar
Roth, S. R.; Sterman, M. B. & Clemente, C. D. (1967) Comparison of EEC correlates of reinforcement, internal inhibition and sleep. Electroencephalography and clinical Neurophysiology 23:509–20. [AR, CHV]CrossRefGoogle Scholar
Rothballer, A. B. (1956) Studies on the adrenaline-sensitive component of the reticular activating system. Electroencephalography and clinical Neurophysiology 8:603–21. [CHV]CrossRefGoogle ScholarPubMed
Hotter, A.; Birdsall, N. J. M.; Field, P. M. & Raisman, G. (1979) Muscarinic receptors in the central nervous system of the rat. II. Distribution of binding of [3H] propylbenzyleholine mustard in the midbrain and hindbrain. Brain Research Reviews 1:167–83. [CHV]Google Scholar
Rougeul, A. (1958) Observations electrographiques au cours du conditionne-ment instrumental alimentaire chez le chat. Journal de Physiologic (Paris) 50:494–96. [CHV]Google Scholar
Rougeul, A.; Letalle, A. & Corvisier, J. (1972) Activité rhythmique du cortex somesthesique primaire en relation avec I'immobilite chez le chat libre ev-eille. Electroencephalography and clinical Neurophysiology 33:2339. [CHV]CrossRefGoogle Scholar
Rougeul-Buser, A.; Boyer, J. J. & Buser, P. (1975) From attentiveness to sleep. A topographical analysis of localized "synchronized" activities on the cortex of normal cat and monkey. Acta Neurobiologiae Experimentalis 35:805–19. [AR]Google Scholar
Rougeul-Buser, A.; Boyer, J. J. & Buser, P. (1978) Transitional states of awareness and specific attention neurophysio-logical correlates and hypothesis. International Symposium on Cerebral Correlates of Conscious Experience. Sénanque 1977:215–32. [AR]Google Scholar
Rougeul-Buser, A.; Boyer, J. J. & Buser, P. (1978) Transitional states of awareness and short-term fluctuations of selective attention: Neurophysiological correlates and hypotheses. In: Cerebral correlates of conscious experience, ed. Buser, P. & Rougeul-Buser, A., pp. 215–32. Amsterdam: Elservier/North Holland Biomedical Press. [JRV]Google Scholar
Rudell, A. P.; Fox, S. E. & Ranck, J. B. (1980) Hippocampal excitability phase-locked to the theta rhythm in walking rats. Experimental Neurology 68:8796. [BRK]CrossRefGoogle Scholar
Rusak, B. & Zucker, I. (1975) Biological rhythms and animal behavior. Annual Review of Psychology 26:137–71. [CHV]CrossRefGoogle ScholarPubMed
Sailer, S. & Stumpf, C. (1957) Beeinflussbarkeit der rhinencephalen Tatigkeit des kaninchens. Naunyn-Schmiedeberg's Archiv fur die Experimentelle Pathologic und Pharmakologie 231:6377. [CHV]Google Scholar
Saldate, M. C. & Orrego, F. (1978) Differences in the electrically induced release of 3H-labelled β-phenylethylamine, tyramine, octopamine, and norepinephrine from rat neocortical slices. In: Noncatecholic phenylethylamines, Part I, ed. Mosnaim, A. D. & Wolf, M. E., pp. 159–77. New York: Marcel Dekker. [CHV]Google Scholar
Sandler, M.; Ruthven, C. R. J.; Goodwin, B. L. & Coppen, A. (1979) Decreased cerebrospinal fluid concentration of free-phenylacetic acid in depressive illness. Clinica Chemica Acta 93:169–71. [CHV]CrossRefGoogle ScholarPubMed
Santini, M. & Berl, S. (1972) Effects of reserpine and monoamine oxidase inhibition on the levels of amino acids in sensory ganglia, sympathetic ganglia and spinal cord. Brain Research 47:167–76. [CHV]CrossRefGoogle ScholarPubMed
Sastre, J. P. & Jouvet, M. (1977) Les schemes moteurs du sommeil paradoxal. In: European Congress on Sleep Research, 3d, Montpellier, 1976. Sleep; 1976; memory, environment, epilepsy, sleep staging, ed. Koella, W. P. & Levin, P., pp. 1823. Basel, New York, Karger. [CHV]Google Scholar
Schallert, T.; De Ryck, M. & Teltelbaum, P. (1980) Atropine stereotypy as a behavioral trap: A movement subsystem and electroencephalographic analysis. Journal of Comparative and Physiological Psychology 94:124. [RJS, CHV]CrossRefGoogle Scholar
Schallert, T.; Whishaw, I. Q.; Ramirez, V. D. & Teitelbaum, P. (1978) Compulsive, abnormal walking caused by anticholinergics in akinetic, 6-hydroxydopamine-treated rats. Science 199:1461–63. [RJS]CrossRefGoogle ScholarPubMed
Schaul, N.; Gloor, P.; Ball, G. & Gotman, J. (1978) The electromicrophysiology of delta waves induced by systemic atropine. Brain Research 143:475–86. [CHV]CrossRefGoogle ScholarPubMed
Sehwartzbaum, J. S. (1975) Interrelationship among multiunit activity of the midbrain reticular formation and lateral geniculate nucleus, thalamocortical arousal, and behavior in rats. Journal of Comparative and Physiological Psychology 89:131–57. [RBM]CrossRefGoogle Scholar
Sehwartzbaum, J. S. & Kreinick, C. J. (1973) Interrelationships of hippocampal electroencephalogram, visually evoked response, and behavioral reactivity to photic stimuli in rats. Journal of Comparative and Physiological Psychology, 85:479–90. [CHV]CrossRefGoogle Scholar
Segal, M. (1978) A correlation between hippocampal responses to interhemi-spheric stimulation, hippocampal slow rhythmic activity and behaviour. Electroencephalography and Clinical Neurophysiology 45:409–11. [GH]CrossRefGoogle Scholar
Segal, M. & Bloom, F. E. (1974) The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies. Brain Research 72:7997. [CHV)CrossRefGoogle ScholarPubMed
Segal, M. & Bloom, F. E. (1976) The action of norepinephrine in the rat hippocampus. III. Hippocampal cellular responses to locus coeruleus stimulation in the awake rat. Brain Research 107:499511. [GH]CrossRefGoogle ScholarPubMed
Semba, K. & Komisaruk, B. R. (1978) Phase of the theta wave in relation to different limb movements in awake rats. Electroencephalography and Clinical Neurophysiology 44:6171. [BRK]CrossRefGoogle ScholarPubMed
Semba, K.; Szechtman, H. & Komisaruk, B. R. (1980) Synchrony among rhythmical facial tremor, neocortical "alpha" waves, and thalamic non-sensory neuronal bursts in intact awake rats. Brain Research 195:281–91. [BRK, CHV]CrossRefGoogle ScholarPubMed
Serkov, F. N.; Makaulin, R. F. & Tychina, D. N. (1966) Electrical activity of the brain following mesencephalic transection under chronic experiment. (Russ) Sechnov Physiological Journal of the USSR 52:837–46. [JRV]Google ScholarPubMed
Shapovalov, A. I. (1975) Neural organization and synaptic mechanisms of supraspinal motor control in vertebrates. Review of Physiology, Biochemistry and Pharmacology 72:154. [CHV]Google Scholar
Shettleworth, S. J. (1975) Reinforcement and the organization of behavior in golden hamsters: Hunger, environment, and food reinforcement. Journal of Experimental Psychology: Animal behavior processes 1:5687. [CHV]Google Scholar
Shiffrin, R. M. & Schneider, W. (1977) Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Reviews, 84:127–89. [EC]CrossRefGoogle Scholar
Shiromani, P. & Fishbein, W. (1980) Cholinergic stimulation of pontine brainstem cells by mini-pump infusion augments paradoxical sleep for five days. Society for Neuroscience Abstracts 6:708. [PS]Google Scholar
Shute, C. C. D. & Lewis, P. R. (1967) The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90:497520. [CHV]CrossRefGoogle ScholarPubMed
Sie, G.; Jasper, H. H. & Wolfe, L. (1965) Rate of Ach release from cortical surface in encephale and cerveau isolé preparations in relation to arousal and epileptic activation of the ECG. Electroencephalography and clinical Neurophysiology 18:206. [CHV]Google Scholar
Siegel, J. M. (1979a) Behavioral functions of the reticular formation. Brain Research Reviews 1:69105. [JBR, CHV]CrossRefGoogle Scholar
Siegel, J. M. (1979b). Unit activity in the reticular formation and REM sleep. In: The functions of sleep, ed. Drucker-Colin, R.; Shkurovich, M. & Sterman, M. B., pp. 3177. New York: Academic Press. [CHV]Google Scholar
Siegel, J. M.; McGinty, D. J. & Breedlove, S. M. (1977) Sleep and waking activity of pontine gigantocellular field neurons. Experimental Neurology 56:553–73. [RBM]CrossRefGoogle ScholarPubMed
Sitaram, N.; Weingartner, H. & Gillin, J. C. (1978) Human serial learning: Enhancement with arecholine and choline and impairment with scopolamine. Science 201:274–76. [CHV]CrossRefGoogle ScholarPubMed
Skinner, B. F. (1938) The behavior of organisms. New York: Appleton-Century-Crofts. [CHV]Google Scholar
Skinner, B. F. (1950) Are theories of learning necessary? Psychological Review 57:193216. [CHV]CrossRefGoogle ScholarPubMed
Skinner, B. F. (1969) Contingencies of reinforcement: A theoretical analysis. New York: Appleton-Century-Crofts. [CHV]Google Scholar
Skinner, B. F. (1971) About behaviorism. New York: Alfred A. Knopf. [CHV]Google Scholar
Slosarska, M. & Zemieki, B. (1973) Sleep-waking cycle in the "cerveau isolé" eat. Archives Italiennes de Biologie 111:138–55. [JRV]Google Scholar
Sterman, M. B. (1972) The basic rest-activity cycle and sleep: Developmental considerations in man and cats. In: Sleep and the maturing nervous system, ed. Clemente, C. D.; Purpura, D. P. & Mayer, F. E., pp. 175–79. New York. Academic Press. [JRV]Google Scholar
Smith, C. M (1972) The release of acetylcholine from rabbit hippocampus. British Journal of Pharmacology 45:172p. [CHV]Google ScholarPubMed
Soulairac, A.; Gottesman, Cl. & Thangapregassam, J. (1965) Étude électrophysiologue des differentes phases de sommeil chez le rat. Archives italiennes de Biologie 103:469–82. [CHV]Google Scholar
Sperry, R. W. (1952) Neurology and the mid-brain problem. American Scientist. 40:291 312. [CHV]Google Scholar
Stavraky, G. W. (1961) Supersensitivity following lesions of the nervous system. Toronto: University of Toronto Press. [CHV]CrossRefGoogle Scholar
Stephan, F. K. & Zucker, I. (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proceedings of the National Academy of Sciences of the United States of America 69:1583–86. [CHV]CrossRefGoogle ScholarPubMed
Steriade, M. (1978) Cortical long-axoned cells and putative interneurons during the sleep-waking cycle. Behavioral and Brain Sciences 3:465514. [GG, KK. PS]CrossRefGoogle Scholar
Steriade, M. (1981) Mechanisms underlying cortical activation. Neuronal organization and properties of the midbrain reticular core and intralaminar thalamic nuclei. In: Brain mechanisms of perceptual awareness and purposeful behavior. ed. Pompeiano, O. & Ajmone-Marsan, C.. New York: Raven Press, in press. [MS]Google Scholar
Steriade, M. & Deschênes, M. (1974) Inhibitory processes and interneuronal apparatus in motor cortex during sleep and waking. II Recurrent and afferent inhibition of pyramidal tract neurons. Journal of Neurophysiology 37:1093 113. [MS]CrossRefGoogle ScholarPubMed
Steriade, M.; Deschênes, M.; Wyzinski, P. & Hallé, J. Y. (1974) Input-output organization of the motor cortex and its alterations during sleep and waking. In: Basic sleep mechanisms, ed. Petre-Quadens, O. & Schlag, J., pp. 144200New York: Academic Press. [MS]Google Scholar
Steriade, M.; losif, G. & Apostol, V. (1969) Responsiveness of thalamic and motor relays during arousal and various stages of sleep. Journal of Neurophysiology 32:251–65. [MS]CrossRefGoogle ScholarPubMed
Stone, T. W.; Taylor, D. A. & Bloom, F. E. (1975) Cyclic AMP and cyclic GMP may mediate opposite neuronal responses in the rat cerebral cortex. Science 187:845–47. [MS]CrossRefGoogle ScholarPubMed
Straughan, D. W. (1975) Neurotransmitters and the hippocampus. In: The hippocampus, Vol. I. Structure and devlopment. ed. Isaacson, R. L. and Pribram, K. H., pp. 239–68. New York: Plenum Press. [CHV]CrossRefGoogle Scholar
Stumpf, C. (1965) Drug action on the electrical activity of the hippocampus. International Review of Neurobiology 8:77138. [CHV, OSV]CrossRefGoogle ScholarPubMed
Stumpf, C.; Petsche, H. & Gogolak, G. (1962) The significance of the rabbit's septum as a relay station between the midbrain and the hippocampus. II. The differential influence of drugs upon both the septal cell firing pattern and the hippocampus theta activity. Electroencephalography and Clinical Neurophysiology 14:212–19. [JCS]CrossRefGoogle ScholarPubMed
Sutton, S.; Spring, B. J. & Tenting, P. (1978) Modality shift at the crossroads. In: The nature of schizophrenia: New approaches to research and treatment, ed. Wynne, L. C., Cromwell, R. L. & Matthysse, S.. New York: John Wiley & Sons, Inc. [EC]Google Scholar
Szerb, J. C. (1964) The effect of tertiary and quaternary atropine on cortical acetyleholine output and on the electroencephalogram in cats. Canadian Journal of Physiology and Pharmacology 42:303–14. [JCS]CrossRefGoogle Scholar
Szerb, J. C. (1967) Cortical acetylcholine release and electroencephalographic arousal. Journal of Physiology (London) 19:329–43. [JCS, CHV]CrossRefGoogle Scholar
Szerb, J. C.; Malik, H. & Hunter, E. G. (1970) Relationship between acetylcholine content and release in the cat's cerebral cortex. Canadian Journal of Physiology and Pharmacology 48:780–90. [CHV]CrossRefGoogle ScholarPubMed
Taylor, J. ed. (1958) The selected writings of John Hughlings Jackson. 2 Vol. London: Staples Press. [CHV]Google Scholar
Teitelbaum, H. (1976) Hippocampal activity and scopolamine. Science 192:914–15. [RBM]CrossRefGoogle Scholar
Teitelbaum, H.; McFarland, W. L. & Mattson, J. L. (1977) Classical conditioning of hippocampal theta patterns in the rat. Journal of Comparative and Physiological Psychology 91:674–81. [RBM]CrossRefGoogle ScholarPubMed
Teuber, H. L. (1955) Physiological psychology. Annual Review of Psychology 6:267–96. [RJS]CrossRefGoogle ScholarPubMed
Thayer, R. E. (1978) Toward a psychological theory of multidimensional activation (arousal). Motivation and Emotion 2:134. [RBM]CrossRefGoogle Scholar
Thompson, R. F. (1980) Neuronal substrates of classical conditioning in a mammalian model system. Paper presented at Society of Neuroscience Symposium. [HE]Google Scholar
Tinbergen, N. (1951) The study of instinct. New York: Oxford University Press. [CHV]Google Scholar
Tinbergen, N. (1963) On the aims and methods of ethology. Zeitschrift für Tierpsychologie 20:410–33. [CHV]CrossRefGoogle Scholar
Tinbergen, N. (1972) The animal in its world: Explorations of an ethologist. vol. 1. London: Allen & Unwin. [CHV]Google Scholar
Tinbergen, N. (1973) The animal in its world: Explorations of an ethologist. vol 2 London: Allen & Unwin. [CHV]Google Scholar
Tønnesen, M. (1948) The absorption and distribution of atropine in rats. Acta Pharmacologica 4:367–78. [CHV]CrossRefGoogle Scholar
Torii, S. & Wikler, A. (1966) Effects of atropine on electrical activity of hippocampus and cerebral cortex in cat. Psychopharmacoloqica (Berlin) 9:189204. [CHV]CrossRefGoogle ScholarPubMed
Ungerstedt, U. (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta physiologica Scandinavica Supplementum 367:148. [CHV]Google ScholarPubMed
Usdin, E. & Sandler, M. (1976) Trace amines and the brain. New York: Marcel Dekker, Inc. [CHV]Google Scholar
Usui, S. & Iwahara, S. (1977) Effects of atropine upon the hippocampal electrical activity in rats with special reference to paradoxical sleep. Electroencephalography and clinical Neurophysiology. 42:510–17. [CHV]CrossRefGoogle ScholarPubMed
Valenstein, E. S. (1973) Brain control. New York: Wiley-Interscience. [NRC]Google Scholar
VanderMaelen, C. P. & Aghajanian, G. K. (1980) Intracellular studies showing modulation of facial motoneurone e.xcitatility by serotonin. Nature 287:346–47. [KK]CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (1969) Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and clinical Neurophysiology 26:407–18. [CHV]CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (1971) Limbic-diencephalic mechanisms of voluntary movement. Psychological Review. 78:83113. [CHV]CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (1975) Neocortical and hippocampal activation in relation to behavior: Effects of atropine, eserine, phenothiazines, and amphetamine. Journal of Comparative and Physiological Psychology 88:300–23. [CHV]CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. & Cooley, R. K. (1974) Hippocampal electrical activity during long-continued avoidance performance. Effects of fatigue. Physiology and Behavior 13:819–23. [CHV]CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. & Pappas, B. A. (1980) Reserpine abolishes movement-correlated atropine-resistant neocortical low voltage fast activity. Brain Research 202:7994. [CHV]CrossRefGoogle ScholarPubMed
Vanderwolf, C. H.; Bland, B. H. & Whishaw, I. Q. (1973) Diencephalic, hippocampal, and neocortical mechanisms in voluntary movement. In: Efferent organization and the integration of behavior, ed. Maser, J. D., pp. 229–62. New York: Academic Press. [CHV]CrossRefGoogle Scholar
Vanderwolf, C. H.; Kolb, B. & Cooley, R. K. (1978) Behavior of the rat after removal of the neocortex and hippocampal formation. Journal of Comparative and Physiological Psychology 92:156–75. [RJS, CHV]CrossRefGoogle ScholarPubMed
Vanderwolf, C. H.; Kramis, R.; Gillespie, L. A. & Bland, B. H. (1975) Hippocampal rhythmic slow activity and neocortical low-voltage fast activity: Relations to behavior. In: The Hippocampus, vol. 2: Neurophysiology and Behavior, ed. Isaacson, R. L. & Pribram, K. H., pp. 101–28. New York: Plenum Press. [HE, CHV]CrossRefGoogle Scholar
Vanderwolf, C. H.; Kramis, R. & Robinson, T. E. (1978) Hippocampal electrical activity during waking behavior and sleep: Analyses using centrally acting drugs. Function of the Septo-hippocampal System. Ciba Foundation Symposium 58 (new series). Elsevier, Excerpta Medica, NorthHolland, Amsterdam. [CHV]Google Scholar
Vanderwolf, C. H.; Robinson, T. E. & Pappas, B. A. (1980) Monoamine replacement after reserpine: Catecholaminergic agonists restore motor activity but phenylethylamine restores atropine-resistant neocortical low voltage fast activity. Brain Research 202:6577. [CHV]CrossRefGoogle ScholarPubMed
Vanegas, H. & Flynn, J. P. (1968) Inhibition of cortically elicited movements by electrical stimulation of the hippocampus. Brain Research 11:489506. [GH]CrossRefGoogle ScholarPubMed
Vertes, R. P. (1979) Brain stem gigantocellular neurons: Patterns of activity during behavior and sleep in the freely moving rat. Journal of Neurophysiology 42:214–28. [PS, CHV]CrossRefGoogle ScholarPubMed
Vertes, R. P. (1980) Brain stem activation of the hippocampus: A role for the magnocellular reticular formation and the MLF. Electroencephalography and Clinical Neurophysiology 50:4858. [RPV]CrossRefGoogle ScholarPubMed
Villablanca, J. (1962) Electroencephalogram in the permanently isolated forebrain of the cat. Science 138:4446. [JRV]CrossRefGoogle ScholarPubMed
Villablanca, J. (1965) The electrocorticogram in the chronic "cerveau isolé" of the cat. Electroencephalography and Clinical Neurophysiology 19:576–86. [JRV]CrossRefGoogle Scholar
Villablanca, J. (1966a) Behavioral and polygraphs study of "sleep" and "wakefulness" in chronic decerebrate cats. Electroencephalography and Clinical Neurophysiology 21:562–77. [CHV, JRV]CrossRefGoogle Scholar
Villablanca, J. (1966b) Ocular behavior in the chronic "cerveau isolé" cat. Brain Research 2:99102. [JRV]CrossRefGoogle ScholarPubMed
Villablanca, J. (1966c) Effects of atropine, eserine and adrenaline in cats with mesencephalic transection and in the "isolated hemisphere" cat preparation. Archivos de Biologia y Mcdicina Experimentales 3:118–29. [JRV]Google Scholar
Villablanca, J. (1966/1967) Electrocorticograni in the chronic "isolated hemisphere" of the cat. Effect of atropine and eserine. Brain Research 3:287–91. [CHV, JRV]CrossRefGoogle Scholar
Villablanca, J. (1972) Specialized lesions: Cerveau isolé and encephale isolé. In: Methods of psychobiology: Laboratory techniques in neuropsychology, Vol. 2. ed. Myers, R. D., pp. 285302. London: Academic Press. [JRV]CrossRefGoogle Scholar
Villablanca, J. (1974) Role of the thalamus in sleep control: Sleep-wakefulness studies in chronic diencephalic and athalamic cats. In: Basic sleep mechanisms, ed. Petre-Quadens, O. & Schlag, J. D., pp. 5181. New York and London: Academic Press. [JRV]Google Scholar
Villablanca, J. & Marcus, R. (1972) Sleep-wakefulness, EEG and behavioral studies of chronic cats without neocortex and striatum: The diencephalic cat. Archives Italiennes de Biologic 110:348–82. [CHV, JRV]Google ScholarPubMed
Villablanca, J. & Schlag, J. (1968) Cortical control of thalamic spindle waves. Experimental Neurology 20:432–44. [JRV]CrossRefGoogle ScholarPubMed
Villablanca, J.; Marcus, R. J. & Olmstead, C. E. (1976) Effects of caudate nuclei or frontal cortical ablations in cats. II. Sleep-wakefulness, EEG and motor activity. Experimental Neurology 53:3150. [JRV]CrossRefGoogle ScholarPubMed
Villablanca, J.; Schlag, J. & Marcus, R. (1970) Blocking of experimental spike and wave by a localized forebrain lesion. Epilepsia 11:163–67 [JRV]CrossRefGoogle ScholarPubMed
Vinogradova, O. S.; Brazhnik, E. S.; Karanov, A. M. & Zhadina, S. D. (1980) Analysis of neuronal activity in rabbits septum with various conditions of deafferentation. Brain Research 187:354–68. [CHV, OSV]CrossRefGoogle ScholarPubMed
Votaw, C. L. (1960) Study of septal stimulation and ablation in the macque monkey. Neurology 10:202–09. [GH]CrossRefGoogle Scholar
Walsh, R. R. (1956) Single cell spike activity in the olfactory bulb. American Journal oj Physiology 186:255–57. [GH]CrossRefGoogle ScholarPubMed
Wamsley, J. K.; Lewis, M. S.; Young, W. S. III & Kuhar, M. J. (1981) Autoradiographic localization of muscarinic cholinergic receptors in rat brainstem. Journal of Neuroscience 1:176–91. [CHV]CrossRefGoogle ScholarPubMed
Wang, G. H. & Akert, K. (1962) Behavior and reflexes of chronic striatal cats. Archives Italiennes de Biologie 100:4885. [CHV]Google Scholar
Weiss, P. (1941) Self-differentiation of the basic patterns of co-ordination. Comparative Psychology Monographs 17:196. [CHV]Google Scholar
Welker, W. I. (1964) Analysis of sniffing in the albino rat. Behaviour 22:223244. [HE]CrossRefGoogle Scholar
Whishaw, I. Q. (1972) Hippocampal electroencephalographic activity in Mongolian gerbil during natural behaviours and wheel running and in the rat during wheel running and conditioned immobility. Canadian Journal of Psychology, 26:219–39. [CHV]CrossRefGoogle ScholarPubMed
Whishaw, I. Q. (1976) The effects of alcohol and atropine on EEG and behavior in the rabbit. Psychopharmacoloqica (Berlin) 48:8390. [CHV]CrossRefGoogle ScholarPubMed
Whishaw, I. Q.; Bland, B. H. & Bayer, S. A. (1978) Postnatal hippocampal granule cell agenesis in the rat: Effects on two types of rhythmical slow activity (RSA) in two hippocampal generators. Brain Research 146:249–68. [GH, CHV]CrossRefGoogle ScholarPubMed
Whishaw, I. Q.; Bland, B. H.; Robinson, T. E. & Vanderwolf, C. H. (1976) Neuromuscular blockade: The effects on two hippocampal RSA (theta) systems and neocortical desynchronization. Brain Research Bulletin 1:573–81. [CHV]CrossRefGoogle ScholarPubMed
Whishaw, I. Q. & Kolb, B. (1979) Neocortical and hippocampal EEG in rats during lateral hypothalamic lesion-induced hyperkinesia: Relations to behavior and effects of atropine. Physiology and Behavior, 22:1107–13. [CHV]CrossRefGoogle ScholarPubMed
Whishaw, I. Q.; Nonneman, A. & Kolb, B. (1980) Environmental constraints on the motor abilities of deneocorticate rats. Society for Neuroscience Abstracts. 6:419. [RJS]Google Scholar
Whishaw, I. Q.; Schallert, T. & Kolb, B. (1981) An analysis of feeding and sensorimotor abilities of rats after decortication. Journal of Comparative and Physiological Psychology. 95: In press. [RJS]CrossRefGoogle ScholarPubMed
Whishaw, I. Q.; Robinson, T. E., Schallert, T.; De Ryck, M. & Ramirez, V. D. (1978) Electrical activity of the hippocampus and neocortex in rats depleted of brain dopamine and norepinephrine: Relations to behavior and effects of atropine. Experimental Neurology 62:748–67. [CHV]CrossRefGoogle ScholarPubMed
Whishaw, I. Q. & Vanderwolf, C. H. (1971) Hippocampal EEG and behavior: Effects of variation in body temperature and relation of EEG; to vibrissae movements, swimming, and shivering. Physiology and Behavior 6:391–97. [CHV]CrossRefGoogle ScholarPubMed
Whishaw, I. Q. & Vanderwolf, C. H. (1973) Hippocampal EEG and behavior: Changes in amplitude and frequency of RSA (theta rhythm) associated with spontaneous and learned movement patterns in rats and cats. Behavioral Biology 8:461–84. [CHV]CrossRefGoogle Scholar
Wikler, A (1952) Pharmacologic dissociation of behavior and EEG "sleep patterns" in dogs: Morphine, N-allylnormorphine, and atropine. Proceedings of the Society for Experimental Biology and Medicine 79:261–65. [CHV]CrossRefGoogle ScholarPubMed
Wilke, J. T.; Lansing, R. W. & Rogers, C. A. (1975) Entrapment of respiration to repetitive finger tapping. Physiological Psychology, 3:345–49. [CHV]CrossRefGoogle Scholar
Winson, J. (1972) Interspecies differences in the occurrence of theta. Behavioral Biology 7:479–87. [CHV]CrossRefGoogle ScholarPubMed
Winson, J. (1974) Patterns of hippocampal theta rhythm is the freely moving rat. Electroencephalography and clinical Neurophysiology 36:291301. [CHV]CrossRefGoogle ScholarPubMed
Winson, J. (1976a) Hippocampal theta rhythm. I. Depth profiles in the curarized rat. Brain Research 103:5770. [CHV]CrossRefGoogle ScholarPubMed
Winson, J. (1976b) Hippocampal theta rhythm. II. Depth profiles in the freely moving rabbit. Brain Research 103:71–9. [CHV]CrossRefGoogle ScholarPubMed
Winson, J. & Abzug, C. (1978) Neuronal transmission through hippocampal pathways dependent on behavior. Journal of Neurophysiology, 41:716–32. [CHV]CrossRefGoogle ScholarPubMed
Woodruff, M. L.; Gage, F. H. III & Isaacson, R. L. (1973) Changes in focal epileptic activity produced by brainstem section in the rabbit. Electroencephalography and Clinical Neurophysiology 35:475–86. [GB]CrossRefGoogle ScholarPubMed
Woods, J. W. (1964) Behavior of chronic decerebrate rats. Journal of Neurophysiology 27:635–44. [CHV]CrossRefGoogle ScholarPubMed
Yamamura, H. I.; Kuhar, M. J.; Greenberg, D. & Synder, S. H. (1974) Muscarinic cholinergic receptor binding: Regional distribution in monkey brain. Brain Research 66:541–46. [CHV]CrossRefGoogle Scholar
Yamamura, H. I.; Kuhar, M. J. & Snyder, S. H. (1974) In vivo identification of muscarinic cholinergic receptor binding in rat brain. Brain Research 80:170–76. [CHV]CrossRefGoogle ScholarPubMed
Yokota, T. & Fujimori, B. (1964) Effects of brain-stem stimulation upon hippocampal electrical activity, somatomotor reflexes and autonomic functions. Electroencephalography and Clinical Neurophysiology 16:375–82. [CH]CrossRefGoogle ScholarPubMed
Zernicki, B. (1968) Pretrigeminal cat. Brain Research 9:114. [MS]CrossRefGoogle ScholarPubMed
Zieglgänsberger, W.; French, E. D.; Siggins, G. R. & Bloom, F. E. (1979) Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. Science 205:415–17. [KK]CrossRefGoogle ScholarPubMed