Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T19:38:02.445Z Has data issue: false hasContentIssue false

Properties of neurons in the dorsal visual pathway of the monkey

Published online by Cambridge University Press:  19 May 2011

Ralph M. Siegel
Affiliation:
Thomas J. Watson Research Laboratory, International Business Machines, Yorktown Heights, NY 10598. Electronic mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, R. A., & Landgraf, J. Z. (in press) Differential use of distance and location information for spatial localization. Perception & Psychophysics. {RAA}Google Scholar
Abrams, R. A., Meyer, D. E. & Kornblum, S. (1989) Speed and accuracy of saccadic eye movements: Characteristics of impulse variability in the oculomotor system. Journal of Experimental Psychology: Human Perception and Performance 15:529–43. {RAA}Google ScholarPubMed
(in press) Eye-hand coordination: Oculomotor control in rapid aimed limb movements. Journal of Experimental Psychology: Human Perception and Performance. {RAA}Google Scholar
Adler-Grinberg, D. & Stark, L. (1978) Eye movements, scanpaths, and dyslexia. American Journal of Optometry and Physiological Optics 55:557–70. {aFHP}CrossRefGoogle ScholarPubMed
Aiple, F. & Kruger, J. (1989) The brain is an input driven neural network: Connectivity analysis of monkey visual cortex by cross correlating spike trains. In: Neural networks from models to applications, ed. Personnaz, L. & Dreyfus, G.. IDSET. {GWS}Google Scholar
Albert, M. L., Soffer, D., Silverberg, R. & Reches, A. (1979) The anatomic basis of visual agnosia. Neurology 29:876–79. {aFHP}Google Scholar
Albright, T. D. & Desimone, R. (1987) Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Experimental Brain Research 65:582–92. {RMS}CrossRefGoogle ScholarPubMed
Allman, J. (1977) Evolution of the visual system in the early primates. Progress in Psychobiology and Physiological Psychology 7:153. {aFHP, RMS}Google Scholar
(1988) Variations in visual cortex organization in primates. In: Neurobiology of neocortex, ed. Rakic, P. & Singer, W.. Wiley & Sons. {aFHP}Google Scholar
Allman, J., Miezin, F. & McGuinness, E. (1985) Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception 14:105–26. {aFHP}CrossRefGoogle ScholarPubMed
Andersen, R. A. (1987) Inferior parietal lobule function in spatial perception and visuomotor integration. In: Handbook of physiology, vol. 5, part 2, ed. Mountcastle, V. B., Plum, F. & Geiger, S. R.. American Physiological Society. {aFHP}Google Scholar
(1988) Visual and visual-motor functions of the posterior parietal cortex. In: Neurobiology of neocortex, ed. Rakic, P. & Singer, W.. Wiley & Sons. {aFHP}Google Scholar
Andersen, R. A., Bracewell, R. M., Barash, S., Fogassi, L. & Ginadt, J. W. (in press) Eye position effects on visual, memory and saccade-related activity in areas LIP and 7a of macaque. Journal of Neuroscience. {RMB}Google Scholar
Andersen, R. A., Essick, G. K. & Siegel, R. M. (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456—58. {arFHP, RMB, CJM, RMS}Google Scholar
Anderson, S. J., Mullen, K. T. & Hess, R. F. (1989) Asymmetry in the retina for motion and colour detection. Investigative Ophthalmology & Visual Science 30:53 (Supplement). {aFHP}Google Scholar
Anstis, S. M. (1978) Apparent movement. In: Handbook of sensory physiology, vol. 8, ed. Held, R.Leibowitz, H. W. & Teuber, H. L.. Springer-Verlag. {aFHP}Google Scholar
Badcock, D. & Lovegrove, W. (1981) The effects of contrast, stimulus duration, and spatial frequency on visible persistence in normal and specifically disabled readers. Journal of Experimental Psychology: Human Perception and Performance 7:495505. {aFHP}Google Scholar
Bahill, A. T., Adler, D. & Stark, L. (1975) Most naturally occurring human saccades have magnitudes of 15 degrees or less. Investigative Ophthalmology 14:468–69. {aFHP}Google Scholar
Barbeito, R., Bedell, H. E., Flom, M. C. & Simpson, T. L. (1987) Effects of luminance on the visual acuity of strabismic and anisometropic amblyopes and optically blurred normals. Vision Research 27:1543–49. {aFHP}Google Scholar
Barbour, C. G., & Coss, R. G. (1988) Differential color brightness as a body orientation cue. Human Factors 30:713–17. {aFHP}CrossRefGoogle ScholarPubMed
Barlow, H. B. (1986) Why have multiple cortical areas? Vision Research 26:8190. {RMB}Google Scholar
Barlow, H. B., & Levick, W. R. (1965) The neural mechanism of directionally selective units in the rabbit’s retina. Journal of Physiology (London) 178:477508. {RMB}CrossRefGoogle Scholar
Barlow, J. S. (1970) Vestibular and non-dominant parietal lobe disorders in man. (Two aspects of spatial disorientation in man.) Diseases of the Nervous System 31:667–73. {aFHP}Google ScholarPubMed
Bender, M. B. (1980) Brain control of conjugate horizontal and vertical eye movements: A survey of the structural and functional correlates. Brain 103:2369. {aFHP}CrossRefGoogle ScholarPubMed
Bender, M. B., & Feldman, M. (1972) The so-called “visual agnosias.” Brain 95:173–86. {aFHP}Google Scholar
Bender, M. B., Feldman, M. & Sobin, A. J. (1968) Palinopsia. Brain 91:321–38. {aFHP}Google Scholar
Bender, M. B., & Furlowe, L. T. (1945) Phenomenon of visual extinction in homonymous fields and psychologic principles involved. Archives of Neurology and Psychiatry 53:29–33. {aFHP}CrossRefGoogle Scholar
Benton, A. L., Levin, H. S. & Van Allen, M. W. (1974) Geographic orientation in patients with unilateral cerebral disease. Neuropsychologia 12:183–91. {aFHP}Google Scholar
Berkley, W. L., & Bussey, F. R. (1950) Altitudinal hemianopia: Report of two cases. American Journal of Opthalmology 22:593600. {aFHP}CrossRefGoogle Scholar
Bishop, A. (1962) Control of the hand in lower primates. Annals of the New York Academy of Sciences 102:316–37. {aFHP}CrossRefGoogle ScholarPubMed
Bisiach, E. & Luzzatti, C. (1978) Unilateral neglect of representational space. Cortex 14:129–33. {RMB}CrossRefGoogle ScholarPubMed
Bisiach, E., Luzzatti, C. & Perani, D. (1979) Unilateral neglect, representational schema and consciousness. Brain 102:609–18. {RMB, rFHP}Google Scholar
Blakemore, C. & Vital-Durand, F. (1986) Organization and post-natal development of the monkey’s lateral geniculate nucleus. Journal of Physiology 380:453–91. {aFHP}Google Scholar
Blasdel, G. G., & Fitzpatrick, D. (1984) Physiological organization of layer 4 in macaque striate cortex. Journal of Neuroscience 4:880–95. {aFHP}CrossRefGoogle ScholarPubMed
Blasdel, G. G., & Lund, J. S. (1983) Termination of afferent axons in macaque striate cortex. Journal of Neuroscience 3:13891413. {aFHP}CrossRefGoogle ScholarPubMed
Bogacz, J., Mendilaharsu, C. & De Mendilaharsu, S. A. (1974) Electro-oculographic abnormalities during pursuit movements in developmental dyslexia. Electroencephalography and Clinical Neurophysiology 36:651–56. {aFHP}CrossRefGoogle ScholarPubMed
Bonnet, C. (1987) Les temps de traitement dans la perception visuelle des formes. In: Psychologie cognitive: Modeles et methodes, ed. Caverni, J. P., Bastien, C., Mendelsohn, P. & Tiberghien, G.. Presses Universitaires de Grenoble. {arFHP }Google Scholar
Bracewell, R. M., Barash, S., Fogassi, L., Gnadt, J. W. & Andersen, R. A. (1989) Saccade-related activity in the lateral intraparietal cortex of rhesus monkeys. Perception 18:514. {RMB}Google Scholar
Bradshaw, J. L., & Nettleton, N. C. (1983) Human cerebral asymmetry. Prentice-Hall. {AWY}Google Scholar
Bradshaw, J. L., Nettleton, N. C., Pierson, J. M., Wilson, L. E. & Nathan, G. (1987) Coordinates of extracorporeal space. In: Neurophysical and neuropsychological aspects of spatial neglect, ed. Jeannerod, M.. North-Holland. {aFHP}Google Scholar
Bradshaw, J. L., Nettleton, N. C. & Taylor, M. J. (1981) Right hemisphere language and cognitive deficit in sinistrals? Neuropsychologia 19:113–32. {AWY}Google Scholar
Bradshaw, J. L., & Sherlock, D. (1982) Bugs and faces in the two visual fields: The analytic/holistic processing dichotomy and task sequencing. Cortex 18:211–26. {MPB}CrossRefGoogle ScholarPubMed
Bradshaw, M. F., Frisby, J. P. & Mayhew, J. E. W. (1987) The recovery of structure from motion: No evidence for a special link with the convergent disparity mechanism. Perception 16:351–57. {aFHP}CrossRefGoogle ScholarPubMed
Brain, W. R. (1941) Visual disorientation with special reference to lesions of the right cerebral hemisphere. Brain 64:244–72. {KMH, rFHP}CrossRefGoogle Scholar
Braitman, D. J. (1984) Activity of neurons in monkey posterior temporal cortex during multidimensional visual discrimination tasks. Brain Research 307:17–28. {aFHP}CrossRefGoogle ScholarPubMed
Brandt, H. F. (1945) The psychology of seeing. Philosophical Library. {MPB}Google Scholar
Brandt, T., Wist, E. R. & Dichgans, J. (1975) Foreground and background in dynamic spatial orientation. Perception ir Psychophysics 17:497503. {arFHP}CrossRefGoogle Scholar
Brannan, J. R., & Camp, C. J. (1987) Visual processing correlates of adult cognitive development. Paper presented at the Third Beyond Formal Operations Symposium at Harvard: Positive Development During Adolescence and Adulthood, June Cambridge, MA. {JRB}Google Scholar
Brannan, J. R., & Williams, M. C. (1987) Allocation of visual attention in good and poor readers. Perception and Psychophysics 41:23–28. {JRB}Google Scholar
Bravo, M., Blake, R. & Morrison, S. (1988) Cats see subjective contours. Vision Research 28:861–65. {aFHP}CrossRefGoogle ScholarPubMed
Breitmeyer, B. G. (1980) Unmasking visual masking: A look at the “why” behind the veil of the “how”. Psychological Review 87:5269. {aFHP}Google Scholar
Breitmeyer, B., Battaglia, F. & Bridge, J. (1977) Existence and implications of a tilted binocular disparity space. Perception 6:161–64. {aFHP, BGB}Google Scholar
Breitmeyer, B., Julesz, B. & Kropfl, W. (1975) Dynamic random-dot stereograms reveal up-down anisotropy and left-right isotropy between cortical hemifields. Science 187:269–70. {aFHP}Google Scholar
Bridgeman, B. (1989) The psychophysics of the pursuit oculomotor system. Perception 6- Psychophysics 46:220–26. {aFHP}Google Scholar
Bridgeman, B., Lewis, S., Heit, G. & Nagle, M. (1979) Relation between cognitive and motor-oriented systems of visual position perception. Journal of Experimental Psychology: Human Perception and Performance 5:692–700. {RAA}Google Scholar
Brown, B., Haegerstrom-Portnoy, G., Yingling, C. D., Herron, J., Galin, D. & Marcus, M. (1983) Tracking eye movements are normal in dyslexic children. American Journal of Optometry and Physiological Optics 60:376–83. {aFHP}CrossRefGoogle ScholarPubMed
Bruce, C. J. (1988) Single neuron activity in the monkey’s prefrontal cortex. In: Neurobiology of neocortex, ed. Rakic, P. & Singer, W.. Wiley & Sons. {arFHP}Google Scholar
Bruce, C. J., Desimone, R. & Gross, C. G. (1986) Both striate cortex and superior colliculus contribute to visual properties of neurons in superior temporal polysensory area of macaque monkey. Journal of Neurophysiology 55:1057–75. {CJB}CrossRefGoogle ScholarPubMed
Bruce, C. J., Goldberg, M. E., Bushnell, M. C. & Stanton, G. B. (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. Journal of Neurophysiology 54:714–34. {arFHP, CJB}CrossRefGoogle ScholarPubMed
Bryden, M. P. (1982) Laterality. Academic Press. {MPB}Google Scholar
(1982) Laterality: Functional asymmetry in the intact brain. Academic Press. {AWY}Google Scholar
Burkhalter, A., Felleman, D. J., Newsome, W. T. & Van Essen, D. C. (1986) Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex. Vision Research 26:6380. {aFHP}Google Scholar
Burkhalter, A. & Van Essen, D. C. (1986) Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey. Journal of Neuroscience 6:2327–51. {aFHP}CrossRefGoogle ScholarPubMed
Bushnell, M. C, Goldberg, M. E. & Robinson, D. L. (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posteriorparietal cortex related to selective visual attention. Journal of Neurophysiology 46:755—72. {aFHP}CrossRefGoogle Scholar
Butter, C. M. (1969) Impairments in selective attention to visual stimuli in monkeys with inferotemporal and lateral striate lesions. Brain Research 12:374–83. {aFHP}Google Scholar
Butter, C. M., Evans, J., Kirsch, N. & Kewman, D. (1989) Altitudinal neglect following traumatic brain injury: A case report. Cortex 25:135–46. {aFHP, CMB}Google Scholar
Campbell, A.. Jr (1978) Deficits in visual learning produced by posterior temporal lesions in cats. Journal of Comparative and Physiological Psychology 92:4557. {aFHP}Google Scholar
Cappa, S., Sterzi, R., Vallar, G. & Bisiach, E. (1987) Remission of hemineglect and anosognosia during vestibular stimulation. Neuropsychologia 25:775–82. {aFHP}Google Scholar
Carlow, T. J., Flynn, J. T. & Shipley, T. (1976) Color perimetry. Archives of Ophthalmology 94:1492–96. {aFHP}CrossRefGoogle ScholarPubMed
Carmon, A., Nachshon, I. & Starinsky, R. (1976) Developmental aspects of visual hemifield differences in perception of verbal material. Brain and Language 3:463–69. {AWY}Google Scholar
Cavanagh, P., Boeglin, J. & Eizner-Favreau, O. (1985) Perception of motion in equiluminous kinematograms. Perception 14:151—62. {aFHP}Google Scholar
Chaikin, J. D., Corbin, H. H. & Volkmann, J. (1962) Mapping a field of short-time visual search. Science 138:1327–28. {aFHP}CrossRefGoogle ScholarPubMed
Chang, J. J., & Julesz, B. (1984) Cooperative phenomena in apparent movement perception of random-dot cinematograms. Vision Research 24:1781–88. {JRB, rFHP}Google Scholar
Chedru, F., Leblanc, M. & Lhermitte, F. (1973) Visual searching in normal and brain-damaged subjects (contribution to the study of unilateral inattention). Cortex 9:94111. {arFHP}CrossRefGoogle Scholar
Clarke, P. G. H., & Whitteridge, D. (1976) The projection of the retina, including the “red area” onto the optic tectum of the pigeon. Quarterly Journal of Experimental Physiology 61:351–58. {MAG}Google Scholar
Cocito, L., Favale, E. & Tartaglione, A. (1977) Asimmetrie funzionali tra emicampo visivo superiore ed inferiore nel soggetto normale. Bollettino Delia Societa Italiana di Biologia Sperimentale 53:629–33. {aFHP}Google Scholar
Cogan, A. I. (1979) The relationship between the apparent vertical and the vertical horopter. Vision Research 19:655–65. {aFHP}Google Scholar
Coltheart, M. (1983) Ecological necessity of iconic memory. Behavioral and Brain Sciences 6:1718. {aFHP}Google Scholar
Connolly, M. & Van Essen, D. C. (1984) The representation of the visual field in parvicellular and magnocellular layers of the lateralgeniculate nucleus in the macaque monkey. Journal of Comparative Neurology 226:544–64. {aFHP}Google Scholar
Cowey, A. (1981) Why are there so many visual areas? In: organization of the cerebral cortex, ed. Schmitt, F. O.. MIT Press. {RMB}Google Scholar
Critchley, M. (1953) The parietal lobes. Haftier. {aFHP, RMB, RMS}Google Scholar
Crowne, D. P., Dawson, K. A. & Richardson, C. M. (1989) Unilateral periarcuate and posterior parietal lesions impair conditional position discrimination learning in the monkey. Neuropsychologia 27:1119–27. {rFHP}Google Scholar
Cummings, J. L., Landis, T. & Benson, D. F. (1983) Environmental disorientation: Clinical and radiological findings. Neurology 33:103–4.{aFHP}Google Scholar
Cyander, M. & Regan, D. (1982) Neurons in cat visual cortex tuned to the direction of motion in depth: Effect of positional disparity. Vision Research 22:967–82. {aFHP}Google Scholar
Damasio, A. R., & Benton, A. L. (1979) Impairment of hand movements under visual guidance. Neurology 29:170–78. {aFHP}CrossRefGoogle ScholarPubMed
Damasio, A. R., & Damasio, H. (1983) The anatomic basis of pure alexia. Neurology 33:1573–83. {aFHP}CrossRefGoogle ScholarPubMed
Damasio, A. R., Damasio, H. & van Hoesen, G. W. (1982) Prosopagnosia: Anatomic basis and behavioral mechanisms. Neurology 32:331–41. {aFHP}CrossRefGoogle ScholarPubMed
De Hamsher, K. S. (1978) Stereopsis and unilateral brain disease. Investigative Opthalomology 6-Visual Science 17:336–43. {aFHP}Google Scholar
Delis, D. C, Robertson, L. C. & Efron, R. (1986) Hemispheric specialization of memory for visual hierarchical stimuli. Neuropsychologia 24:205–14. {aFHP}Google Scholar
Deregowski, J. B. (1989) Real space and represented space: Cross-cultural perspectives. Behavioral and Brain Sciences 12:51119. {aFHP}CrossRefGoogle Scholar
Derrington, A. M., Krauskopf, j. & Lennie, P. (1984) Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology 357:241–65. {aFHP}Google Scholar
Derrington, A. M., & Lennie, P. (1984) Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology 357:219–40. {aFHP}CrossRefGoogle ScholarPubMed
Desimone, R. & Gross, C. G. (1979) Visual areas in the temporal cortex of the macaque. Brain Research 178:363–80. {CJB, MK}Google Scholar
Desimone, R. & Schein, S. J. (1987) Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form. Journal of Neurophysiology 57:835–68. {aFHP, MK}Google Scholar
Desimone, R., Schein, S. J., Moran, J. & Ungerleider, L. G. (1985) Contour, color and shape analysis beyond the striate cortex. Vision Research 25:441–52. {arFHP}Google Scholar
DeYoe, E. A., & Van Essen, D. C. (1988) Concurrent processing streams in monkey visual cortex. Trends in Neurosciences 11:219–26. {aFHP}Google Scholar
Diamond, I. T., & Hall, W. C. (1969) Evolution of neocortex. Science 164:251–62. {aFHP, RWW}CrossRefGoogle ScholarPubMed
Dichgans, J. & Brandt, T. (1978) Visual-vestibular interaction: Effects on self-motion perception and postural control. In: Handbook of Sensory Physiology VIII, Perception, ed. Held, R., Leibowitz, H. & Teuber, H.-L.. Springer-Verlag. {BGB, rFHP}Google Scholar
DiZio, P. & Lackner, J. R. (1989) Perceived self-motion elicited by postrotary head tilts in a varying gravitoinertial force background. Perception & Psychophysics 46:114–18. {aFHP}Google Scholar
Dolezal, H. (1982) Living in a world transformed: Perceptual and performatory adaptation to visual distortion. Academic Press. {NO, rFHP}Google Scholar
Donovan, W. J. (1978) Structure and function of the pigeon visual system. Physiological Psychology 6:403–37. {MAG}Google Scholar
Drager, U. C., & Hubel, D. H. (1976) Topography of visual and somatosensory projections to mouse superior colliculus. Journal of Neurophysiology 39:91101. {aFHP }CrossRefGoogle ScholarPubMed
Dreher, B., Fukada, Y. & Rodieck, R. W. (1976) Identification, classification and anatomical segregation of cells with X-Iike and Y-like properties in the lateral geniculate nucleus of old-world primates. Journal of Physiology 258:433–52. {aFHP}CrossRefGoogle ScholarPubMed
Dubner, R. & Zeki, S. M. (1971) Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Research 35:528–32. {MK}CrossRefGoogle Scholar
Duffy, C. J. (1984) The legacy of association cortex. Neurology 34:192–97. {MK}CrossRefGoogle ScholarPubMed
Duffy, C. J., & Wurtz, R. H. (1989) Radial and axial directionality in cortical visual area MST. Society for Neuroscience Abstracts 15:119. {MK, RMS}Google Scholar
Eckhorn, R., Bauer, R., Jordan, W., Brosch, M.Kruse, W., Munk, M. & Reitboeck, H. J. (1988) Coherent oscillations: A mechanism of feature linking in the visual cortex. Biological Cybernetics 60:121–30. {GWS}Google Scholar
Eichenbaum, H., Wiener, S. I., Shapiro, M. L. & Cohen, N. J. (1989) The organization of spatial coding in the hippocampus: A study of neural ensemble activity. Journal of Neuroscience 9:2764–75. {GWS}Google Scholar
Emmerton, J. (1983a) Functional morphology of the visual system. In: Physiology and behavior of the pigeon, ed. Abs, M.. Academic Press. {MAG}Google Scholar
(1983b) Vision. In: Physiology and behavior of the pigeon, ed. Abs, M.. Academic Press. {MAG}Google Scholar
Engel, F. L. (1971) Visual conspicuity, directed attention and retinal locus. Vision Research 11:563–76. {aFHP}Google Scholar
Enright, J. T. (1989) Convergence during human vertical saccades: Probable causes and perceptual consequences. Journal of Physiology 410:4565. {rFHP}CrossRefGoogle ScholarPubMed
Enroth-Cugell, C. & Robson, J. G. (1966) The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology 187:517–52. {aFHP, RMB}Google Scholar
Erichsen, J. T., Hodos, W. R., Evinger, C, Bessette, B. B. & Phillips, S. J. (1989) Head orientation in pigeons: Postural locomotor, and visual determinants. Brain, Behavior and Evolution 33:268–78. {MAG}CrossRefGoogle ScholarPubMed
Eviatar, L., Miranda, S., Eviatar, A., Freeman, K. & Borkowski, M. (1979) Development of nystagmus in response to vestibular stimulation in infants. Annals of Neurology 5:508–14. {aFHP}Google Scholar
Feinberg, T. E., Pasik, T. & Pasik, P. (1978) Extrageniculostriate vision in the monkey VI. Visually guided accurate reaching behavior. Brain Research 152:422–28. {CJB}Google Scholar
Felleman, D. J., & Van Essen, D. C. (1987) Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. Journal of Neurophysiology 57:8889–920. {arFHP}Google Scholar
Fenelon, B., Neill, R. A. & White, C. T. (1986) Evoked potentials to dynamic random dot stereograms in upper, center and lower fields. Documenta Ophthalomologica 63:151–56. {aFHP}Google Scholar
Findlay, J. M. (1980) The visual stimulus for saccadic eye movements in human observers. Perception 9:721. {JMF, rFHP}Google Scholar
(1982) Global processing for saccadic eye movements. Vision Research 22:1033–45. {JMF}Google Scholar
(1985) Eye movements and visual cognition. L’Annee Psychologique 85:101–36. {JMF}CrossRefGoogle Scholar
Findlay, J. M., & Harris, L. R. (1984) Small saccades to double-stepped targets moving in two dimensions. In: Theoretical and applied aspects of eye movement research, ed. Gale, A. G. & Johnson, F.. North-Holland. {MPB, rFHP}Google Scholar
Finke, R. A., & Kosslyn, S. M. (1980) Mental imagery acuity in the peripheral visual field. Journal of Experimental Psychology: Human Perception and Performance 6:126–39. {aFHP}Google Scholar
Fischer, B. & Boch, R. (1981) Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkeys. Experimental Brain Research 44:129–37. {aFHP}Google Scholar
Fischer, B. & Boch, R. (1985) Peripheral attention versus central fixation: Modulation of the visualactivity of prelunate cortical cells of the rhesus monkey. Brain Research 345:111–23. {aFHP}Google Scholar
Fischer, B. & Breitmeyer, B. (1987) Mechanisms of visual attention revealed by saccadic eye movements. Neuropsychologia 25:7383. {rFHP}Google Scholar
Flom, M. C., & Bedell, H. E. (1985) Identifying amblyopia using associated conditions, acuity, and nonacuity features. American Journal of Optometry and Physiological Optics 62:153–60. {aFHP}Google Scholar
Fox, R. (1982) The effect of depth position on stimulus interaction. In: Three-dimensional displays: Perceptual research and applications to military systems, ed. Getty, D. J.. National Academy of Sciences. {aFHP}Google Scholar
Fox, R. & Patterson, R. (1981) Depth separation and lateral interference. Perception <& Psychophysics 30:513–20. {aFHP}Google Scholar
Friberg, L., Olsen, T. S., Roland, P. E., Paulson, O. B. & Lassen, N. A. (1985) Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation. Brain 108:609–23. {aFHP}Google Scholar
Friedlander, M. J., Stanford, L. R. & Sherman, S. M. (1982) Effects of monocular deprivation on the structure-function relationship of individual neurons in the cat’s lateral geniculate nucleus. Journal of Neuroscience 2:321–30. {aFHP]Google Scholar
Frisby, J. P. (1980) Seeing, illusion, brain and mind. Oxford University Press. {RWW}Google Scholar
Fukuda, T. (1959) Vertical writing with eyes covered: A new test of vestibulo-spinal reaction. Ada Oto-larnygologica 50:26–36. {aFHP}Google Scholar
Fuster, J. M., & Jervey, J. P. (1982) Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. Journal of Neuroscienee 2:361–75. {aFHP}Google Scholar
Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F. & Geschwind, N. (1985) Developmental dyslexia: Four consecutive cases with cortical anomalies. Annals of Neurology 18:222–33. {aFHP}Google Scholar
Galifret, Y. (1968) Les diverse aires fonctionelles de la retine du pigeon. Zeitschrift fur zellforschung 86:535–45. {MAG}Google Scholar
Garraghty, P. E. (1985) Mixed cells in the cat lateral geniculate nucleus: Functional convergence or error in development? Brain, Behavior and Evolution 26:5864. {aFHP }Google Scholar
Gattass, R. & Gross, C. G. (1981) Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. Journal of Neurophysiology 46:621–38. {aFHP}Google Scholar
Gawryszewski, L. G., Riggio, L., Rizzolatti, G. & Umilta, C. (1987) Movements of attention in the three spatial dimensions and the meaning of “neutral” cues. Neuropsychologia 25:1929 {aFHP}Google Scholar
Gazzaniga, M. S., & Ladavas, E. (1987) Disturbances in spatial attention following lesion or disconnection of the right parietal lobe. In: Neurophysiological and neuropsychological aspects of spatial neglect, ed. Jeannerod, M.. North-Holland. {aFHP}Google Scholar
Ghim, H.-R., & Eimas, P. H. (1988) Global and local processing by 3- and 4-month-old infants. Perception & Psychophysics 43:165–71. {aFHP}Google Scholar
Gibson, J. J. (1958) Visually controlled locomotion and visual orientation in animals. British Journal of Psychology 49:182–94. {BGB}Google Scholar
(1966) The senses considered as perceptual systems. Houghton-Mifflin. {aFHP}Google Scholar
(1979) The ecological approach to visual perception. Lawrence Erlbaum Associates. {MK}Google Scholar
Ginsburg, A. P. (1986) Spatial filtering and visual form perception. In: Handbook of perception and performance, vol. 2, ed. Boff, K. R.Kaufman, L. & Thomas, J. P.. Wiley & Sons. {aFHP}Google Scholar
Girotti, F., Milanese, C., Casazza, M., Allegranza, A., Corridori, F. & Avanzini, G. (1982) Oculomotor disturbances in Balint’s syndrome: Anatomoclinical findings and electrooculographic analysis in a case. Cortex 18:603–14. {aFHP}Google Scholar
Gloning, K. & Quatember, R. (1966) Methodischer beitrag zur untersuchung der prosopagnosie. Neuropsychologia 4:133141. {aFHP }CrossRefGoogle Scholar
Gnadt, J. W., & Andersen, R. A. (1988) Memory related planning activity in the posterior parietal cortex of macaque. Experimental Brain Research 70:216–20. {RMB}Google Scholar
Gnadt, J. W., & Mays, L. E. (1989) Posterior parietal cortex: The oculomotor near response and spatial coding in 3-D space. Society for Neuroscienee Abstracts 15:786. {RMS}Google Scholar
Godoy, J., Luders, H., Dinner, D. S., Morris, H. H. & Wyllie, E. (1990) Versive eye movement elicited by cortical stimulation of the human brain. Neurology 40:296–99. {rFHP}Google Scholar
Goldberg, M. E., & Robinson, D. L. (1978) Visual system: Superior colliculus. In: Handbook of behavioral neurobiology, vol. 1, ed. Masterton, R. B.. Plenum. {aFHP}Google Scholar
Goldenberg, G., Podreka, I., Steiner, M., Willmes, K., Suess, E. & Deecke, L. (1989) Regional cerebral blood flow patterns in visual imagery. Neuropsychologia 27:641–664. {arFHP}Google Scholar
Goldman-Rakic, P. S. (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Handbook of physiology, vol. 5, ed. Mountcastle, V., Plum, F. & Geiger, S. R.. American Physiological Society. {aFHP}Google Scholar
(1988) Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscienee 11:137–56. {GWS}Google Scholar
Goldstein, L. H., Canavan, A. G. M. & Polkey, C. E. (1989) Cognitive mapping after unilateral temporal lobectomy. Neuropsychologia 27:167—77. {aFHP}Google Scholar
Goodale, M. A. (1983a) Visuomotor organization of pecking in the pigeon. In: Advances in vertebrate neuroethology, ed. Ewert, J.-P.Capranica, R. R. & Ingle, D. J.. Plenum. {MAG}Google Scholar
(1983b) Visually guided pecking in the pigeon (Columba livia). Brain, Behavior, and Evolution 22:2241. {MAG}CrossRefGoogle Scholar
(1983c) Vision as a sensorimotor function. In: Behavioral approaches to brain research, ed. Robinson, T. E.. Oxford University Press. {MAG}Google Scholar
(1988) Modularity in visuomotor control: From input to output. In: Computational processes in human vision: An interdisciplinary perspective, ed. Pylyshyn, Z.. Ablex. {MAG}Google Scholar
Goodale, M. A., & Graves, J. A. (1982) Interocular transfer in the pigeon: Retinal locus as a factor. In: Analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.. MIT Press. {MAG}Google Scholar
Gottlieb, J. P., MacAvoy, M. G. & Bruce, C. J. (1989) Unit activity related to smooth pursuit eye movements in the rhesus monkey frontal eye fields. Society for Neuroscienee Abstracts 15:1203. {CJB}Google Scholar
Grabowska, A. (1983) Lateral differences in the detection of stereoscopic depth. Neuropsychologia 21:249–57. {aFHP}CrossRefGoogle ScholarPubMed
Graves, J. A., & Goodale, M. A. (1979) Do training conditions affect interocular transfer in the pigeon? In: Structure and function of the cerebral commissures, ed. Steele Russell, I., van Hof, M. & Berluccchi, G.. Macmillan. {MAG}Google Scholar
Gray, C. M., Koening, P., Engel, A. K. & Singer, W. (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–37. {GWS}Google Scholar
Gray, C. M., & Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences, USA 86:1698–1702. {GWS}Google Scholar
Gregory, R. L. (1977) Vision with isoluminant colour contrast: I. A projection technique and observations. Perception <&• Psychophysics 6:113–19. {aFHP}Google Scholar
Gross, C. G., Bender, D. B. & Gerstein, G. L. (1979) Activity of inferior temporal neurons in behaving monkeys. Neuropsychologia 17:215–29. {aFHP}Google Scholar
Gross, C. G., Bender, D. B. & Rocha-Miranda, C. E. (1974) Inferotemporal cortex: A single-unit analysis. In: The neurosciences: Third study program, ed. Schmitt, F. O. & Worden, F. G.. MIT Press. {aFHP}Google Scholar
Gross, C. G., Cowey, A. & Manning, F. J. (1971) Further analysis of visual discrimination deficits following foveal prestriate and inferotemporal lesions in rhesus monkeys. Journal of Comparative and Physiological Psychology 76:17. {aFHP}CrossRefGoogle ScholarPubMed
Gross, C. G., Desimone, R., Albright, T. D. & Schwartz, E. L. (1985) Inferior temporal cortex and pattern recognition. In: Pattern recognition mechanisms, ed. Chagas, C., Gattass, R. & Gross, C.. Springer-Verlag. {aFHP}Google Scholar
Gross, C. G., & Mishkin, M. (1977) The neural basis of stimulus equivalence across retinal translation. In: Lateralization in the nervous system, ed. Harnad, S., Doty, R., Jaynes, J., Goldstein, L. & Krauthamer, G.. Academic Press. {CJM}Google Scholar
Gross, C. G., Rocha-Miranda, C. E. & Bender, D. B. (1972) Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology 35:96111. {CJM, rFHP}Google Scholar
Grusser, O.-J. (1983) Multimodal structure of the extrapersonal space. In: Spatially oriented behavior, ed. Hein, A. & Jeannerod, M.. Springer-Verlag. {rFHP}Google Scholar
Guillery, R. W. (1979) A speculative essay on geniculate lamination and its development. In: Progress in brain research: Development and chemical specificity of neurons, vol. 51, ed. Cuenod, M., Kreutzberg, G. W. & Bloom, F. E.. Elsevier/North-Holland Biomedical Press. {aFHP}Google Scholar
Guitton, D., Douglas, R. M. & Voile, M. (1984) Eye-head coordination in cats. Journal of Neurophysiology 52:1030–50. {aFHP}Google Scholar
Haaxma, R. & Kuypers, H. G. J. M. (1975) Intrahemispheric cortical connexions and visual guidance of hand and finger movements in the rhesus monkey. Brain 98:239–60. {aFHP}Google Scholar
Haber, R. N., & Hershenson, M. (1973) The psychology of visual perception. Holt, Rinehart and Winston. {aFHP}Google Scholar
Hackman, R. B. (1940) An experimental study of variability in ocular latency. Journal of Experimental Psychology 27: 546–48.Google Scholar
Haenny, P. E., & Schiller, P. H. (1988) State dependent activity in monkey visual cortex I. Single cell activity in VI and V4 on visual tasks. Experimental Brain Research 69:225–44. {aFHP}Google Scholar
Hall, L. C. (1985) Searching high and low: The development of efficient visual search in hearing, deaf and learning disabled children. In: Eye movements and human information processing, ed. Groner, R., McConkie, G. W. & Menz, C.. North-Holland. {MPB, rFHP }Google Scholar
Halligan, P. W., & Marshall, J. C. (1989) Is neglect (only) lateral? A quadrant analysis of line cancellation. Journal of Clinical and Experimental Neuropsychology 11:793–98. {rFHP}Google Scholar
Hamasaki, D. I., & Flynn, J. T. (1981) Amblyopic eyes have longer reaction times. Investigative Ophthalomology 6-Visual Science 21:846—53. {aFHP}Google Scholar
Hansen, R. M., & Skavenski, A. A. (1977) Accuracy of eye position information for motor control. Vision Research 17:919—26. {RAA}Google Scholar
Harris, C. S. (1965) Perceptual adaptation to inverted, reversed, and displaced vision. Psychological Review 72:419–44. {RWW}CrossRefGoogle ScholarPubMed
Harter, M. R., & Aine, C. J. (1984) Brain mechanisms of visual selective attention. In: Varieties of attention, ed. Parasuraman, R. & Davies, D. R.. Academic Press. {rFHP}Google Scholar
Harwerth, R. S., & Boltz, R. L. (1979) Stereopsis in monkeys using random-dot stereograms: The effect of viewing duration. Vision Research 19:985–91. {aFHP}Google Scholar
Hassler, R. (1966) Comparative anatomy of the central visual system of day-and night-active primates. In: Evolution of the forebrain, ed. Hassler, R. & Stephan, H.. Thieme. {RWW}Google Scholar
Hebb, D. O. (1949) The organization of behavior. Wiley & Sons. {BGB}Google Scholar
Hecaen, H. & Albert, M. L. (1978) Human neuropsychology. Wiley & Sons. {aFHP}Google Scholar
Heilrnan, K. M. & Aalenstein, E. (1979) Mechanisms underlying hemispatial neglect. Annals of Neurology 5:166–70. {KMH}Google Scholar
Heilman, K. M. & van Den Abell, T. (1980) Right hemisphere dominance for attention: The mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology 30:327–30. {aFHP}Google Scholar
Heilman, K. M., Watson, R. T. & Valenstein, E. (1985) Neglect and related disorders. In: Clinical neuropsychology, 2d ed., ed. Heilman, K. M. & Valenstein, E.. Oxford University Press. {KMH}Google Scholar
Hendrickson, A. E. (1985) Dots, stripes and columns in monkey visual cortex. Trends in Neurosciences 8:406–10. {aFHP}Google Scholar
Hess, R. F. & Bradley, A. (1980) Contrast perception above threshold is only minimally impaired in human amblyopia. Nature 287:463–64. {aFHP}Google Scholar
Heuer, H., Dunkel-Abels, G., Bruwer, M., Kroger, H., Romer, T. & Wischmeier, E. (1988) The effects of sustained vertical gaze deviation on the resting state of the vergence system. Vision Research 28:1337–44. {arFHP}Google Scholar
Heuer, H. & Owens, D. A. (1989) Vertical gaze direction and the resting posture of the eyes. Perception 18:363–77. {rFHP}Google Scholar
Heywood, S. & Churcher, J. (1980) Structure of the visual array and saccadic latency: Implications for oculomotor control. Quarterly Journal of Experimental Psychology 32:335–41. {arFHP, MPB, JMF}Google Scholar
Hickey, T. L. (1977) Postnatal development of the human lateral geniculate nucleus: Relationship to a critical period for the visual system. Science 198:836–38. {aFHP}Google Scholar
Hilz, R., Rentschler, I. & Brettel, H. (1977) Myopic and strabismic amblyopia: Substantial differences in human visual development. Experimental Brain Research 30:445–46. {aFHP}Google Scholar
Hine, T. & Thorn, F. (1987) Compensatory eye movements during active head rotation for near targets: Effects of imagination, rapid head oscillation and vergence. Vision Research 27:1639–57. {aFHP}Google Scholar
Hines, D., Jordan-Brown, L. & Juzwin, K. R. (1987) Hemispheric visual processing in face recognition. Brain and Cognition 6:91100. {aFHP}Google Scholar
Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. (1986) Distributed representations. In: Parallel distributed processing: Explorations in the microstructure of cognition, ed. Rumelhart, D. E. & McClelland, J. L.. MIT Press. {RMB}Google Scholar
Hodos, W. R. (1976) Vision and the visual system: A bird’s-eye view. In: Progress in psychobiology and physiological psychology, ed. Sprague, J. & Epstein, A. N.. Academic Press. {MAG}Google Scholar
Holmes, G. (1938) The cerebral integration of the ocular movements. British Medical Journal 2:107–12. {aFHP}Google Scholar
Honda, H. (1985) Spatial localization in saccade and pursuit-eye-movement conditions: A comparison of perceptual and motor measures. Perception and Psychophysics 38:4146. {JMF}Google Scholar
Hong, X. & Regan, D. (1989) Visual field defects for unidirectional and oscillatory motion in depth. Vision Research 29:809—16. {aFHP}Google Scholar
Horak, F. B., Shumway-Cook, A., Crowe, T. K. & Black, F. O. (1988) Vestibular function and motor proficiency of children with impaired hearing, or with learning disability and motor impairments. Developmental Medicine and Child Neurology 30:6479. {aFHP}Google Scholar
Horel, J. A. (1978) The neuroanatomy of amnesia: A critique of the hippocampal memory hypothesis. Brain 101:403–45. {aFHP}Google Scholar
Hoyt, C. S. (1982) Abnormalities of the vestibulo-ocular response in congenital esotropia. American Journal of Ophthalomology 93:703–8.{aFHP}Google Scholar
Hughes, A. (1977) The topography of vision in mammals of contrasting lifestyles: Comparative optics and retinal organisation. In: Handbook of sensory physiology, vol. VII/5, ed. Crescitelli, F.. Springer-Verlag. {RWW}Google Scholar
Hughes, H. C. & Zimba, L. D. (1987) Natural boundaries for the spatial spread of directed visual attention. Neuropsychologia 25:518. {arFHP}Google Scholar
Hurvich, L. M. (1981) Color vision. Sinauer Associates. {aFHP}Google Scholar
Hylkema, B. S. (1942) Examination of the visual field by determining the fusion frequency. Ada Ophthalmologica 20:181–93. {aFHP}Google Scholar
Hyvarinen, J. (1982) The parietal cortex of monkey and man. Springer-Verlag. {arFHP}Google Scholar
Ikeda, M. & Takeuchi, T. (1975) Influence of foveal load on the functional visual field. Perception ir Psychophysics 18:255–60. {aFHP}Google Scholar
Jampel, R. S. (1959) Representation of the near-response on the cerebral cortex of the macaque. American Journal of Ophthalmology 48:573–82. {aFHP}Google Scholar
Jeannerod, M., ed. (1987) Neurophysiological and neuropsychological aspects of spatial neglect. Elsevier. {RMB}Google Scholar
Jeannerod, M. & Biguer, B. (1987) The directional coding of reaching movements: A visuomotor conception of spatial neglect. In: Neurophysiological and neuropsychological aspects of spatial neglect, ed. Jeannerod, M.. North-Holland. {aFHP}Google Scholar
Jeannerod, M., Gerin, P. & Pernier, J. (1968) Deplacements et fixations du regard dans l’exploration libre d’une scene visuelle. Vision Research 8:8197. {aFHP}Google Scholar
Jeeves, M. A., Milner, A. D., Perrett, D. I. & Smith, P. A. J. (1983) Visual cells responsive to direction of movement and stimulus form in the anterior superior temporal sulcus of the macaque monkey. Journal of Physiology 341:80P. {aFHP}Google Scholar
Jensen, I. & Seedorff, H. H. (1976) Temporal lobe epilepsy and neuro -ophthalmology: Ophthalmological findings in 74 temporal lobe resected patients. Ada Ophthalmologica 54:827–41. {aFHP}Google Scholar
Jones, R. & Kerr, K. E. (1972) Vergence eye movements to pairs of disparity stimuli with shape selection cues. Vision Research 12:1425–30. {aFHP}Google Scholar
Jones-Gotman, M. (1986) Memory for designs: The hippocampal contribution. Neuropsychologia 24:193203. {aFHP}Google Scholar
Julesz, B. (1978) Global stereopsis: Cooperative phenomena in stereoscopic depth perception. In: Handbook of sensory physiology, vol. 8, ed. Held, R., Leibowitz, H. W. & Teuber, H.-L.. Springer-Verlag. {aFHP}Google Scholar
Julesz, B., Breitmeyer, B. & Kropfl, W. (1976) Binocular-disparity-dependent upper-lower hemifield anisotropy and left-right hemifield isotropy as revealed by dynamic random-dot stereograms. Perception 5:129–41. {aFHP}Google Scholar
Kaas, J. H. (1989) Changing concepts of visual cortex organization in primates. In: Neuropsychology of visual perception, ed. Brown, J. W.. Lawrence Erlbaum Associates. {MK}Google Scholar
Kaplan, E. & Shapley, R. M. (1982) X and Y cells in the lateral geniculate nucleus of macaque monkeys. Journal of Physiology 330:125–43. {aFHP}Google Scholar
Karpov, B. A., Luria, A. R. & Yarbuss, A. L. (1968) Disturbances of the structure of active perception in lesions of the posterior and anterior regions of the brain. Neuropsychologia 6:157–66. {arFHP}Google Scholar
Kaufman, L. & Richards, W. (1969) Spontaneous fixation tendencies for visual forms. Perception it Psychophysics 5:8588. {aFHP}Google Scholar
Keating, E. G., Gooley, S. G. & Kenny, D. V. (1985) Impaired tracking and loss of predictive eye movements after removal of the frontal eye fields. Society for Neuroscience Abstracts 11:472. {CJB}Google Scholar
Kelly, D. H. (1977) Visual contrast sensitivity. Optica Ada 24:107–29. {arFHP}Google Scholar
Kendrick, K. M. & Baldwin, B. A. (1987) Cells in the temporal cortex of conscious sheep respond preferentially to the sight of faces. Science 236:448–50. {RMB}Google Scholar
Kesner, R. P., Farnsworth, G. & DiMattia, B. V. (1989) Double dissociation of egocentric and allocentric space following medial prefrontal and parietal cortex lesions in the rat. Behavioral Neuroscience 103:956–61. {GWS}Google Scholar
King-Smith, P. E. & Garden, D. (1976) Luminance and opponeet-colo* contributions to visual detection and adaptation and to temporal and spatial integration. Journal of the Optical Society of America 66:709–17. {aFHP}Google Scholar
Kinsbourne, M. (1972) Eye and head turning indicates cerebral lateralization. Science 176:539–41. {aFHP}Google Scholar
Kinsboume, M. & Hicks, R. E. (1978) Functional cerebral space: A model for overflow, transfer and interference effects in human performance. In: Attention and performance VII, ed. Requin, J.. Lawrence Erlbaum Associates. {MK}Google Scholar
Kinsbourne, M. & Warrington, E. K. (1962) A disorder of simultaneous form perception. Brain 85:461–86. {aFHP}Google Scholar
Komatsu, H. & Wurtz, R. H. (1988) Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. Journal of Neurophysiology 60:580603. {MK, rFHP}Google Scholar
Komatsu, H., Roy, J. P. & Wurtz, R. H. (1988) Binocular disparity sensitivity of cells in area MST of the monkey. Society for Neuroscience Abstracts 14:202. {aFHP, MK}Google Scholar
Kooistra, C. A. & Heilman, K. M. (1989) Hemispatial visual inattention masquerading as hemianopia. Neurology 39:1125–27. {arFHP, CMB}Google Scholar
Kriss, A. & Halliday, A. M. (1980) A comparison of occipital potentials evoked by pattern onset, offset and reversal by movement. In: Evoked potentials, ed. Barber, C.. MTP Press. {aFHP}Google Scholar
Krose, B. J. A. & Julesz, B. (1988) Evidence against rapid voluntary shifts of attention to non-cued target locations in a visual search task. Investigative Ophthalmology and Visual Science 29:400. {JRB}Google Scholar
(1989) The control and speed of shifts of attention. Vision Research 29:1607–19. {JRB, rFHP}Google Scholar
Lanman, J., Bizzi, E. & Allum, J. (1978) The coordination of eye and head movement during smooth pursuit. Brain Research 153:3953. {aFHP}Google Scholar
Larrabee, G. J., Levin, H. S., Huff, F. J., Kay, M. C. & Guinto, F. C. Jr. (1985) Visual agnosia contrasted with visual-verbal disconnection. Neuropsychologia 23:112. {aFHP}Google Scholar
Lasley, D. J., Kivlin, J., Rich, L. & Flynn, J. T. (1984) Stereo-discrimination between diplopic images in clinically normal observers. Investigative Ophthalmology & Visual Science 25:1316–20. {aFHP}Google Scholar
Latto, R. & Cowey, A. (1971) Fixation changes after frontal eye-field lesions in monkeys. Brain Research 30:2536. {aFHP}Google Scholar
Legge, G. E., Pelli, D. G., Rubin, G. S. & Schleske, M. M. (1985) Psychophysics of reading I. Normal vision. Vision Research 25:239–52. {JRB}Google Scholar
Legge, G. E., Rubin, G. S. & Luebker, A. (1978) Psychophysics of reading V. The role of contrast in normal vision. Vision Research 27:1165–77. {JRB}Google Scholar
Leinonen, L., Hyvarinen, J., Nyman, G. & Linnankoski, I. (1979) Functional properties of neurons in lateral part of association area 7 in awake monkeys, Part 1. Experimental Brain Research 34:299320. {KMH}Google Scholar
Leinonen, L. & Nyman, G. (1979) Functional properties of cells in anterolateral part of are a 7 associative face area of awake monkeys, Part 2. Experimental Brain Research 34:321–33. {KMH}Google Scholar
Levine, D. N., Warach, J. & Farah, M. (1985) Two visual systems in mental imagery: Dissociation of “what” and “where” in imagery disorders due to bilateral posterior cerebral lesions. Neurology 35:1010–18. {aFHP}Google Scholar
Levinson, H. (1988) The cerebellar-vestibular basis of learning disabilities in children, adolescents and adults: Hypothesis and study. Perceptual and Motor Skills 67:9831006. {aFHP}Google Scholar
Levy-Schoen, A. (1969) Determination et latence de la response oculomtrice a deux stimulus. L’Annee Psychologique 69:373–92. {JMF, rFHP}Google Scholar
Liederman, J. & Meehan, P. (1986) When is between-hemisphere division of labor advantageous? Neuropsychologia 24:863–74. {MPB}CrossRefGoogle ScholarPubMed
Liederman, J., Merola, J. M. & Martinez, S. (1985) Interhemispheric collaboration in response to bilateral input. Neuropsychologia 23:673–83. {MPB}Google Scholar
Lisberger, S. G., & Pavelko, T. A. (1989) Topographic and directional organization of visual motion inputs for the initiation of horizontal and vertical smooth-pursuit eye movements in monkeys. Journal of Neurophysiology 61:173–85. {CJB, rFHP}Google Scholar
Livingstone, M. & Hubel, D. (1988a) Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240:740–49. {aFHP, LMC}Google Scholar
Livingstone, M. S., & Hubel, D. H. (1988b) Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity? Journal of Neuroscience 8:4334–39. {aFHP}Google Scholar
Logothetis, N. K., & Schall, J. D. (1989) Neuronal correlates of subjective visual perception. Science 245:761–63. {aFHP}Google Scholar
Longuet-Higgins, H. C., & Prazdny, K. (1980) The interpretation of a moving retinal image. Proceedings of the Royal Society of London, series B 208:385–97. {RMS}Google Scholar
Low, F. N. (1943) The peripheral visual acuity of 100 subjects. American Journal of Physiology 140:8388. {aFHP}Google Scholar
Lu, C. & Fender, D. H. (1972) The interaction of color and luminance in stereoscopic vision. Investigative Ophthalmology 11:482–90. {aFHP}Google Scholar
Lundh, B. L., Lennerstrand, G. & Derefeldt, G. (1983) Central and peripheral normal contrast sensitivity for static and dynamic sinusoidal gratings. Ada Ophthalmologica 61:171–82. {aFHP}Google Scholar
Lupp, U., Hauske, G. & Wolf, W. (1976) Perceptual latencies to sinusoidal gratings. Vision Research 16:969–72. {aFHP}Google Scholar
Luria, A. R., Pravdina-Vinarskaya, E. N. & Yarbuss, A. L. (1963) Disorders of ocular movement in a case of simultagnosia. Brain 86:219–28. {aFHP}Google Scholar
Lynch, J. C. (1980) The functional organization of posterior parietal association cortex. Behavioral and Brain Sciences 3(4):485534. {arFHP}Google Scholar
(1987) Frontal eye field lesions in monkeys disrupt visual pursuit. Experimental Brain Research 68:437–41. {CJB, rFHP}Google Scholar
Lynch, J. C, Mountcastle, V. B., Talbot, W. H. & Yin, T. C. T. (1977) Parietal lobe mechanisms for directed visual attention. Journal of Neurophysiology 40:369–89. {aFHP}CrossRefGoogle ScholarPubMed
MacAvoy, M. G., & Bruce, C. J. (1989) Oculomotor deficits associated with lesions of the frontal eye field area of in macaque monkeys. Society for Neuroscience Abstracts 15:1203. {CJB}Google Scholar
MacAvoy, M. G., Bruce, C. J. & Gottlieb, J. (1988) Smooth eye movements elicited by microstimulation in the frontal eye fields region of alert macaque monkeys. Society Neuroscience Abstracts 14:956. {CJB}Google Scholar
Mack, A. (1978) Three modes of visual perception. In: Modes of Perceiving and Processing Information, ed. Pick, H. L. Jr. & Saltzman, E.. Wiley & Sons. {GWS}Google Scholar
Magnusson, M., Pyykko, I. & Norrving, B. (1986) The relationship of optokinetic nystagmus to pursuit eye movements, vestibular nystagmus and to saccades in humans: A clinical study. Ada Otolaryngologica 101:361–70. {aFHP}Google Scholar
Malpeli, J. P., & Baker, F. H. (1975) The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta. Journal of Comparative Neurology 161:569–94. {aFHP}Google Scholar
Manning, F. J. (1971) The selective attention “deficit” of monkeys with ablations of foveal prestriate cortex. Psychonomic Science 25:291—92. {aFHP}Google Scholar
Manning, M. L., Finlay, D. C, Neill, R. A. & Frost, B. G. (1987) Detection threshold differences to crossed and uncrossed disparities. Vision Research 27:1683–86. {aFHP, MPB}Google Scholar
Marr, D. (1982) Vision. W. H. Freeman. {CJM, RWW}Google Scholar
Marrocco, R. T., McClurkin, J. W. & Young, R. A. (1982) Spatial summation and conduction latency classification of cells of the lateral geniculate nucleus of macaques. Journal of Neuroscience 2:1275–91. {aFHP}Google Scholar
Martens, W., Blake, R., Sloane, M. & Cormack, R. H. (1981) What masks utrocular discrimination. Perception 6-Psychophysics 30:521–32. {aFHP}Google Scholar
Martin, F. & Lovegrove, W. (1984) The effects of field size and luminance on contrast sensitivity differences between specifically reading disabled and normal children. Neuropsychological 22:7377. {aFHP}Google Scholar
Martin, K. A. C. (1988) From enzymes to visual perception: A bridge too far? Trends in Neurosciences 11:380–87. {aFHP}Google Scholar
Martin, M. (1979) Hemispheric specialization for local and global processing. Quarterly Journal of Experimental Psychology 17:3340. {MPB}Google Scholar
Martinoya, C, Rey, J. & Bloch, S. (1981) Limits of the pigeon’s binocular field and direction for best binocular viewing. Vision Research 21:1197–200. {MAG}Google Scholar
Matelli, M., Olivieri, M. F., Saccani, A. & Rizzolatti, G. (1983) Upper visual space neglect and motor deficits after section of the midbrain commissures in the cat. Behavioral Brain Research 10:263–85. {aFHP}Google Scholar
Matin, L., Matin, E. & Pearce, D. G. (1969) Visual perception of direction when voluntary saccades occur I. Relation of visual direction of a fixed target extinguished before a saccade to a flash presented during a saccade. Perception and Psychophysics 5:6580. {RAA}Google Scholar
Maunsell, J. H. R. (1987) Physiological evidence for two visual subsystems. In: Matters of intelligence: Conceptual structures in cognitive neuroscience, ed. Vaina, L. M.. Reidel Publishing. {aFHP}Google Scholar
Maunsell, J. H. R., & Newsome, W. T. (1987) Visual processing in monkey extrastriate cortex. Annual Review of Neuroscience 10:363401. {arFHP}Google Scholar
Maunsell, J. H. R., & Van Essen, D. C. (1983a) Functional properties of neurons in middle temporal visual area of the macaque monkey I. Selectivity for stimulus direction, speed, and orientation. Journal of Neurophysiology 49:1127–47. {aFHP, MK, RMS}Google Scholar
(1983b) Functional properties of neurons in middle temporal visual area of the macaque monkey II. Binocular interactions and the sensitivity to binocular disparity. Journal of Neurophysiology 49:1148–67. {aFHP, MK, RMS}Google Scholar
(1983c) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience 3:2563–86. {RMS}Google Scholar
(1987) The topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. Journal of Comparative Neurology 266:535–55. {arFHP}Google Scholar
Mays, L. E., & Sparks, D. L. (1980) Saccades are spatially, not retinotopically coded. Science 208:1163–64. {RAA}Google Scholar
McColgin, F. H. (1960) Movement thresholds in peripheral vision. Journal of the Optical Society of America 50:774–79. {aFHP}Google Scholar
McDonnell, P. M. (1975) The development of visually guided reaching. Perception & Psychophysics 18:181–85. {aFHP}Google Scholar
McFie, J. & Zangwill, O. L. (1960) Visual-constructive disabilities associated with lesions of the left cerebral hemisphere. Brain 83:243–60. {aFHP}Google Scholar
Meadows, J. C. (1974a) Disturbed perception of colours associated with localised cerebral lesions. Brain 97:615–32. {aFHP}Google Scholar
(1974b) The anatomical basis of prosopagnosia. Journal of Neurology, Neurosurgery, and Psychiatry 37:489501. {aFHP }Google Scholar
Menzel, E. W. (1973) Chimpanzee spatial memory organization. Science 182:943–45. {aFHP}Google Scholar
Merigan, W. H. (1989) Chromatic and achromatic vision of macaques: Role of the P pathway. Journal of Neuroscience 9:776–83. {aFHP}Google Scholar
Merigan, W. H. &: Eskin, T. A. (1986) Spatio-temporal vision of macaques with severe loss of Pβ retinal ganglion cells. Vision Research 26:1751–61. {aFHP}Google Scholar
Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E. & Smith, J. E. K. (1988) Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review 95:340–70. {RAA}Google Scholar
Meyer, D. E., Smith, J. E. K. & Wright, C. E. (1982) Models for the speed and accuracy of aimed movements. Psychological Review 89:449–82. [RAA]Google Scholar
Michael, W. F., & Halliday, A. M. (1971) Differences between the occipital distribution of upper and lower field pattern-evoked responses in man. Brain Research 32:311–24. [aFHP]Google Scholar
Miles, F. A., & Kawano, K. (1987) Visual stabilization of the eyes. Trends in Neurosciences 10:153–58. [aFHP]Google Scholar
Miles, P. W. (1954) An analysis of depth factors in anisopia and anisodominance. American Journal of Ophthalmology 37:98106. [aFHP]Google Scholar
Miles, W. R. (1936) The reaction time of the eye. Psychological Monographs 47:268–93. [rFHP]Google Scholar
Miller, J. M., Ono, H. & Steinbach, M. J. (1980) Additivity of fusional vergence and pursuit eye movements. Vision Research 20:4347. [aFHP]Google Scholar
Miller, L. K. (1969) Eye-movement latency as a function of age, stimulus uncertainty, and position in the visual field. Perceptual & Motor Skills 28:631–36. [JMF, rFHP]Google Scholar
Millodot, M. & Lamont, A. (1974) Peripheral visual acuity in the vertical plane. Vision Research 14:1497–98. [aFHP]Google Scholar
Mishkin, M. (1972) Cortical visual areas and their interactions. In: The brain and human behavior, ed. Karczmar, A. & Eccles, J. C.. Springer-Verlag. [aFHP]Google Scholar
Mishkin, M. & Forgays, D. G. (1952) Word recognition as function of retinal locus. Journal of Experimental Psychology 43:4348. [MPB, rFHP]Google Scholar
Mitchell, D. E., & Blakemore, C. (1970) Binocular depth perception and the corpus callosum. Vision Research 10:4954. [aFHP]Google Scholar
Miyashita, Y. (1988) Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335:817–20. [aFHP]Google Scholar
Mohler, C. W., & Wurtz, R. H. (1977) Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys. Journal of Neurophysiology 40:7494. [CJB]Google Scholar
Moran, J. & Desimone, R. (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229:782–84. [aFHP]Google Scholar
Morris, R., Mickel, S., Brooks, M., Swavely, S. & Heilman, K. (1986) Recovery from neglect. Journal of Clinical and Experimental Neuropsychology 7:609. [aFHP]Google Scholar
Motter, B. C., & Mountcastle, V. B. (1981) The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: Foveal sparing and opponent vector organization. Journal of Neuroscience 1:326. [MK, CJM]Google Scholar
Motter, B. C, Steinmetz, M. A., Duffy, C. J. & Mountcastle, V. B. (1987) Functional properties of parietal visual neurons: Mechanisms of directionality along a single axis. Journal of Neuroscience 7:154–76. [aFHP, MK, CJM]Google Scholar
Mountcastle, V. B. (1976) The world around us: Neural command functions for selective attention. Neurosciences Research Program Bulletin 14:147. [aFHP]Google Scholar
(1979) An organizing principle for cerebral function: The unit module and the distributed system. In: The neurosciences fourth study program, ed. Schmitt, F. O. & Worden, F. G.. MIT Press. [GWS]Google Scholar
Mountcastle, V. B., Motter, B. C, Steinmetz, M. A. & Duffy, C. J. (1984) Looking and seeing: The visual functions of the parietal lobe. In: Dynamic aspects of neocortical function, ed. Edelman, G. M., Gall, W. E. & Cowan, W. M.. Wiley & Sons. [CJB, rFHP]Google Scholar
Movshon, J. A., Adelson, E. H., Gizzi, M. S. & Newsome, W. T. (1985) The analysis of moving visual patterns. In: Pattern recognition mechanisms, ed. Chagas, C., Gattass, R. & Gross, C.. Springer-Verlag. [aFHP]Google Scholar
Mullen, K. T. (1985) The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. Journal of Physiology 359:381400. [aFHP]Google Scholar
Murasugi, C. M., & Howard, I. P. (1989) Human horizontal optokinetic nystagmus elicited by the upper versus the lower visual fields. Visual Neuroscience 2:7379. [aFHP, LMC]Google Scholar
Murray, I., MacCana, F. & Kulikowski, J. J. (1983) Contribution of two movement detecting mechanisms to central and peripheral vision. Vision Research 23:151–59. [aFHP]Google Scholar
Mustillo, P. (1985) Binocular mechanisms mediating crossed and uncrossed stereopsis. Psychological Bulletin 97:187201. [aFHP]Google Scholar
Nakayama, K. (1983) Motion parallax sensitivity and space perception. In: Spatially oriented behavior, ed. Hein, A. & Jeannerod, M.. Springer-Verlag. [aFHP]Google Scholar
Nakayama, K. & Silverman, G. H. (1986) Serial and parallel processing of visual feature conjunctions. Nature 320:264–65. [aFHP]Google Scholar
Nathan, P. W. (1946) On simultaneous bilateral stimulation of the body in a lesion of the parietal lobe. Brain 69:325–34. [aFHP]Google Scholar
Navon, D. (1977) Forest before trees: The precedence of global features in visual perception. Cognitive Psychology 9:353–83. [arFHP, JRB]Google Scholar
Newman, R. P., Kinkel, W. R. & Jacobs, L. (1984) Altitudinal hemianopia caused by occipital infarctions: Clinical and computerized tomographic correlations. Archives of Neurology 41:413–18. [aFHP]Google Scholar
Newsome, W. T., & Wurtz, R. H. (1988) Probing visual cortical function with discrete chemical lesions. Trends in Neurosciences 11:394400. [arFHP]Google Scholar
Niederlandova, Z. & Litvinenkova, V. (1973) Stabilographic findings in strabismus. Aggressologie 14D:3336. [aFHP]Google Scholar
Norton, T. T., & Casagrande, V. A. (1982) Laminar organization of receptive-field properties in lateral geniculate nucleus of bush baby (Galago crassicaudatus). Journal of Neurophysiology 47:715–41. [aFHP]Google Scholar
Nye, P. W. (1973) On the functional differences between frontal and lateral visual fields of the pigeon. Vision Research 13:559–74. [MAG]Google Scholar
O’Reilly, R. C, Kosslyn, S. M., Marsolek, C. J. & Chabris, C. F. (in press) Receptive field characteristics that allow parietal lobe neurons to encode spatial properties of visual input: A computational analysis. Journal of Cognitive Neuroscience. [CJM]Google Scholar
Ornitz, E. M. (1970) Vestibular dysfunction in schizophrenia and childhood autism. Comprehensive Psychiatry 11:159–73. [aFHP]Google Scholar
Osaka, N. (1976) Reaction time as a function of peripheral retinal locus around fovea: Effect of stimulus size. Perceptual and Motor Skills 43:603-6.[NO]Google Scholar
(1978) Naso-temporal differences in human reaction time in the peripheral visual field. Neuropsychologia 16:229303. [NO]Google Scholar
Osman Hill, W. C. (1972) Evolutionary biology of the primates. Academic Press. [aFHP]Google Scholar
Osterberg, G. (1935) Topography of the layer of rods and cones in the human retina. Acta Ophthalmologica 6:1102. (Supplement) [arFHP]Google Scholar
Ottes, F. P., van Gisbergen, J. A. M. & Eggermont, J. J. (1985) Latency dependence of colour-based target vs. nontarget information by the saccadic system. Vision Research 25:849–62. [JMF]Google Scholar
Paillard, J. (1982) The contribution of peripheral and central vision to visually guided reaching. In: Analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J. W.. MIT Press. [aFHP, RMB ]Google Scholar
Pandya, D. N., & Seltzer, B. (1980) Cortical connections and the functional organization of posterior parietal cortex. Behavioral and Brain Sciences 3(4):511–13. [aFHP]Google Scholar
Parker, D. M., & Salzen, E. A. (1977) Latency changes in the human visual evoked response to sinusoidal gratings. Vision Research 17:1201— 4.[aFHP]Google Scholar
Pasik, P., Pasik, T. & Bender, M. B. (1969) The pretectal syndrome in monkeys I. Disturbances of gaze and body posture. Brain 92:521–34. [aFHP]Google Scholar
Pavlidis, G. T. (1981) Do eye movements hold the key to dyslexia? Neuropsychologia 19:5764. [aFHP]Google Scholar
Payne, W. H. (1967) Visual reaction times on a circle about the fovea. Science 155:481–82. [aFHP]Google Scholar
Penfield, W. (1957) Vestibular sensations and the cerebral cortex. Annals of Otology, Rhinology and Laryngology 66:691–98. [aFHP]Google Scholar
Penfield, W. & Rasmussen, T. (1950) The cerebral cortex of man. MacMillan. [aFHP]Google Scholar
Pennal, B. E. (1977) Human cerebral asymmetry in color discrimination. Neuropsychologia 15:563–68. [aFHP]Google Scholar
Perenin, M. T., & Vighetto, A. (1983) Optic ataxia: A specific disorder in visuomotor coordination. In: Spatially oriented behavior, ed. Hein, A. & Jeannerod, M.. Springer-Verlag. [aFHP]Google Scholar
Perrett, D. I., Smith, P. A. J., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. D. & Jeeves, M. A. (1984) Neurones responsive to faces in the temporal cortex: Studies of functional organization, sensitivity to identity and relation to perception. Human Neurobiology 3:197208. [arFHP]Google Scholar
(1985) Visual cells in the temporal cortex sensitive to face view and gaze direction. Proceedings of the Royal Society of London B223:293317. [RMB, MK]Google Scholar
Perry, V. H., Oehler, R. & Cowey, A. (1984) Retinal cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12:1101–23. [arFHP]Google Scholar
Peterhans, E. & von Der Heydt, R. (1989a) Elements of form perception in monkey V2: A correlation with the cytochrome oxidase pattern. Society for Neuroscience Abstracts 15:161. [aFHP]Google Scholar
(1989b) Mechanisms of contour perception in monkey visual cortex II.Google Scholar
Contours, bridging gaps.Journal of Neuroscience 9:1749–63. [rFHP]Google Scholar
Pettigrew, J. D., & Dreher, B. (1987) Parallel processing of binocular disparity in the cat’s retinogeniculocortical pathways. Proceedings of the Royal Society, series B 232:297321. [rFHP]Google Scholar
Phillips, G. (1933) Perception of flicker in lesions of the visual pathways. Brain 56:464–78. [aFHP]Google Scholar
Piaget, J. (1969) The mechanisms of perception. Rutledge & Kegan. {aFHP}Google Scholar
Pierrot-Deseilligny, C, Gray, F. & Brunet, P. (1986) Infarcts of both inferior parietal lobules with impairment of visually guided eye movements, peripheral visual inattention and optic ataxia. Brain 109:8197. {aFHP}Google Scholar
Plant, G. T., Zimmem, R. L. & Durden, K. (1983) Transient visually evoked potentials to the pattern reversal and onset of sinusoidal gratings. Electroencephalography and Clinical Neurophysiology 56:147–58. {aFHP}Google Scholar
Poggio, G. R., & Poggio, T. (1984) The analysis of stereopsis. Annual Review of Neuroscience 7:379412. {aFHP}Google Scholar
Polit, A. & Bizzi, E. (1979) Characteristics of motor programs underlying arm movements in monkeys. Journal of Neurophysiology 42:183–94. {RAA}Google Scholar
Polyak, S. (1957) The vertebrate visual system. University of Chicago Press. {aFHP, RWW}Google Scholar
Post, R. B., & Leibowitz, H. W. (1986) Two modes of processing visual information: Implications for assessing visual impairment. American Journal of Optometry and Physiological Optics 63:9496. {rFHP}Google Scholar
Previc, F. H. (1988) The neurophysiological significance of the Nl and PI components of the visual evoked potential. Clinical Vision Sciences 3:195202. {aFHP}Google Scholar
(in preparation) A general theory concerning the prenatal origins of cerebral lateralization in humans. Psychological Review. {arFHP}Google Scholar
Previc, F. H., & Harter, M. R. (1982) Electrophysiological and behavioral indicants of selective attention to multifeature gratings. Perception 6-Psychophysics 32:465–72. {aFHP}Google Scholar
Ramachandran, V. S., & Cavanagh, P. (1987) Motion capture anisotrophy. Vision Research 27:97106. {aFHP}Google Scholar
Rapcsak, S. Z., Cimino, C. R. & Heilman, K. M. (1988) Altitudinal neglect. Neurology 38:277–81. {aFHP, CMB, KMH}Google Scholar
Rauschecker, J. P., von Gnmau, M. W. & Poulin, C. (1987) Centrifugal organization of direction preferences in the cat’s lateral suprasylvian visual cortex and its relation tor flow field processing. Journal of Neuroscience 7:943–58. {BGB}Google Scholar
Rayner, K. & McConkie, G. W. (1976) What guides a reader’s eye movements? Vision Research 16:829–37. {JRB}Google Scholar
Rayner, K. & Pollatsek, A. (1981) Eye movement control during reading: Evidence for direct control. Quarterly Journal of Experimental Psychology 33A:351–73. {JRB}Google Scholar
Regan, D. & Beverley, K. I. (1979) Visually guided locomotion: Psychophysical evidence for a neural mechanism sensitive to flow patterns. Science 205:311–13. {BGB}Google Scholar
(1983) Visual fields for frontal plane motion and for changing size. Vision Research 23:673–76. {aFHP}Google Scholar
Regan, D., Erkelens, C. J. & Collewijn, H. (1986) Visual field defects for vergence eye movements and for stereomotion perception. Investigative Ophthalmology it Visual Science 27:806–19. {aFHP }Google Scholar
Richards, W. (1972) Disparity masking. Vision Research 12:1113–24. {aFHP}Google Scholar
Richards, W. & Lieberman, H. R. (1985) Correlation between stereo ability and the recovery of structure-from-motion. American Journal of Optometry and Physiological Optics 62:111–18. {aFHP}Google Scholar
Richards, W. & Regan, D. (1973) A stereo field map with implications for disparity processing. Investigative Ophthalmology 12:904–9. {aFHP}Google Scholar
Richmond, B. J., Wurtz, R. H. & Sato, T. (1983) Visual responses of inferior temporal neurons in awake rhesus monkey. Journal of Neurophysiology 50:1415–32. {MK}Google Scholar
Rickman, D. W., & Brecha, N. C. (1989) Morphologies of somatostatin-immunoreactive neurons in the rabbit retina. In: Neurobiology of the Inner Retina, ed. Weiler, R. & Osbome, N. N.. Springer-Verlag. {LMC}Google Scholar
Rijsdijk, J. P., Kroon, J. N. & van der Wildt, G. J. (1980) Contrast sensitivity as a function of position on the retina. Vision Research 20:235–41. {aFHP}Google Scholar
Riopelle, A. J., & Bevan, W. Jr. (1953) The distribution of scotopic sensitivity in human vision. American Journal of Psychology 66:7380. {aFHP}Google Scholar
Ristanovic, D. & Hajdukovic, R. (1981) Effects of spatially structured stimulus fields on pattern reversal visual evoked potentials. Electroencephalography and Clinical Neurophysiology 51:599610. {aFHP}Google Scholar
Rizzolatti, G. & Camarda, R. (1987) Neural circuits for spatial attention and unilateral neglect. In: Neurophysiological and neuropsychological aspects of spatial neglect, ed. Jeannerod, M.. North-Holland. {aFHP}Google Scholar
Rizzolatti, G., Gentilucci, M. & Matelli, M. (1985) Selective spatial attention: One center, one circuit, or many circuits? In: Attention and performance XI, ed. Posner, M. I. & Marin, O. S. M.. Lawrence Erlbaum Associates. {arFHP, KMH}Google Scholar
Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. (1987) Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia 25:3140. {aFHP}Google Scholar
Rizzolatti, G., Scandolara, C, Matelli, M. & Gentilucci, M. (1981a) Afferent properties of periarcuate neurons in macaque monkeys I. Somatosensory responses. Behavioral Brain Research 2:125–46. {KMH}Google Scholar
(1981b) Afferent properties of periarcuate neurons in macaque monkeys II. Visual responses. Behavioral Brain Research 2:147–63. {KMH}Google Scholar
Robertson, L. C, Lamb, M. R. & Knight, R. T. (1988) Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans. Journal of Neuroscience 8:3757–69. {arFHP}Google Scholar
Robinson, D. A. (1975) Oculomotor control signals. In: Basic mechanisms of ocular motility and their clinical implications, ed. Lennerstrand, G. & Bach-y-Rita, P.. {RMB}Google Scholar
Robinson, D. L., Goldberg, M. E. & Stanton, G. B. (1978) Parietal association cortex in the primate: Sensory mechanisms and behavioral modifications. Journal of Neurophysiology 41:910–32. {arFHP}Google Scholar
Robson, J. & Graham, N. (1978) Probability summation and regional variation in sensitivity across the visual field. Investigative Ophthalmology and Visual Science 17:221. {JRB}Google Scholar
Rodman, H. R*., Gross, C. G. & Albright, T. A. (1985) Removal of striate cortex does not abolish responsiveness of neurons in visual area MT of the macaque. Society for Neuroscience Abstracts 11:1246. {CJB}Google Scholar
Rodman, H. R., Gross, C. G. & Albright, T. D. (1986) Responses of neurons in visual area MT after removal of the superior colliculus. Society for Neuroscience Abstracts 12:1369. {CJB}Google Scholar
Rogers, B. & Graham, M. (1982) Similarities between motion parallax and stereopsis in human depth perception. Vision Research 22:261–70. {aFHP}Google Scholar
Rolls, E. T., & Baylis, G. C. (1986) Size and contrast have only small effects on the responses to faces of neurons in the cortex of the superior temporal sulcus of the monkey. Experimental Brain Research 65:3848. {MK}Google Scholar
Rolls, E. T., Baylis, G. C, Hasselmo, M. E. & Nalwa, V. (1989) The effect learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey. Experimental Brain Research 76:153–64. {GWS}Google Scholar
Rothstein, T. B., & Sacks, J. G. (1972) Defective stereopsis in lesions of the parietal lobe. American Journal of Ophthalmology 73:281–84. {aFHP}Google Scholar
Rovamo, J. & Virsu, V. (1979) An estimation and application of the cortical magnification factor. Experimental Brain Research 37:495510. {JMF}Google Scholar
Roy, J. P., & Wurtz, R. H. (1989) Effect of the peripheral visual field on disparity sensitive cells in cortical visual area MST. Society for Neuroscience Abstracts 15:119. {MK, RMS}Google Scholar
Rubens, A. B. (1985) Caloric stimulation and unilateral visual neglect. Neurology 35:1019–24. {aFHP}Google Scholar
Rueckl, J. G., Cave, K. R. & Kosslyn, S. M. (1989) Why are “what” and “where” processed by separate cortical visual systems? A computational investigation. Journal of Cognitive Neuroscience 1:171—86. {CJM}Google Scholar
Sagar, S. M. (1987) Somatostatin-like immunoreactive material in the rabbit retina: Immunohistochemical staining using monoclonal antibodies. Journal of Comparative Neurology 266:291–99. {LMC}Google Scholar
Sagar, S. M., & Marshall, P. E. (1988) Somatostatin-like immunoreactive material in associational ganglion cells of human retina. Neuroscience 27:507–16. {LMC, RWW, rFHP}Google Scholar
Sahgal, A. & Iversen, S. D. (1978) Categorization and retrieval after selective inferotemporal lesions in monkeys. Brain Research 146:341–50. {aFHP}Google Scholar
Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y. & Iwai, E. (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. Journal of Neuroscience 6:145—57. {aFHP, RMS}Google Scholar
Sakata, H., Shibutani, H. & Kawano, K. (1980) Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. Journal of Neurophysiology 43:1654–72. {MK, RMS}Google Scholar
Sakata, H., Shibutani, H., Kawano, K. & Harrington, T. L. (1985) Neural mechanisms of space vision in the parietal association cortex of the monkey. Vision Research 25:453–63. {aFHP}Google Scholar
Salman, S. D., & von Noorden, G. K. (1970) Induced vestibular nystagmus in strabismic patients. Annals of Otology, Rhinology and Laryngology 79:352–57. {aFHP}Google Scholar
Scarisbrick, D. J., Tweedy, J. R. & Kuslansky, G. (1987) Hand preference and performance effects on line bisection. Neuropsychologia 25:695–99. {aFHP}Google Scholar
Schein, S. J., Marrocco, R. T. & De Monasterio, F. M. (1982) Is there a high concentration of color-selective cells in area V4 of monkey visual cortex? Journal of Neurophysiology 47:193213. {aFHP}Google Scholar
Schiller, P. H. (1986) The central visual system. Vision Research 26:1351–86. {aFHP}Google Scholar
Schiller, P. H., & Colby, C. L. (1983) The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast. Vision Research 23:1631–41. {aFHP }Google Scholar
Schiller, P. H., Logothetis, N. K. & Charles, E. R. (1989) The functions of the color-opponent (C-O) and broad-band (B-B) channels in perception at isolumieance. Investigative Ophthalmology & Visual Science 30:323. (Supplement) {aFHP}Google Scholar
Schiller, P. H. & Malpeli, J. G. (1978) Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology 41:788–97. {aFHP}Google Scholar
Schiller, P. H.Malpeli, J. G. & Schein, S. J. (1979) Composition of geniculostriate input to superior colliculus of the rhesus monkey. Journal of Neurophysiology 42:1124–33. {aFHP}Google Scholar
Schiller, P. H.Stryker, M.Cynader, M. & Berman, N. (1974) Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. Journal of Neurophysiology 37:181–94. {aFHP}Google Scholar
Schmidt, R. A., Zelaznik, H., Hawkins, B., Frank, J. S. & Quinn, J. T., Jr.Google Scholar
(1979) Motor-output variability: A theory for the accuracy of rapid motor acts. Psychological Review 86:415—51. {RAA}Google Scholar
Schneider, G. E. (1969) Two visual systems. Science 163:895–902. {CJB, LMC}Google Scholar
Schor, C. & Narayan, V. (1981) The influence of field size upon the spatial frequency response of optokinetic nystagmus. Vision Research 21:985—94. {aFHP}Google Scholar
Schor, C. M. & Westall, C. (1984) Visual and vestibular sources of fixation instability in amblyopia. Investigative Ophthalmology <& Visual Science 25:729–38. {aFHP}Google Scholar
Schwartz, S. & Kirsner, K. (1982) Laterality effects in visual information processing: Hemispheric specialisation or the orienting of attention? Quarterly Journal of Experimental Psychology 34A:6177. {aFHP}Google Scholar
Schwartz, T. L.Dobson, V.Sandstrom, D. J. & van Hof-vanDuin, J. Duin, J. (1987) Kinetic perimetry assessment of binocular visual field shape and size in young infants. Vision Research 27:2163–75. {aFHP}Google Scholar
Sedgwick, H. A. (1986) Space perception. In: Handbook of perception and performance, vol. 1, ed. Boff, K. R., Kaufman, L. & j. P. Thomas. Wiley & Sons. {aFHP}Google Scholar
Sejnowski, T. J. (1988) Neural populations revealed. Nature 332:308. {RMB}Google Scholar
Semmes, J. (1968) Hemispheric specialization: A possible clue to mechanism. Neuropsychologia 6:11–26. {MPB}Google Scholar
Sergent, J. (1983a) The role of the input in visual hemispheric processing. Psychological Bulletin 93:481512. {MPB}Google Scholar
(1983b) The effects of sensory limitations on hemispheric processing. Canadian Journal of Psychology 37:345–66. {MPB}Google Scholar
Shapley, R. & Perry, V. H. (1986) Cat and monkey retinal ganglion cells and their visual functional roles. Trends in Neurosciences 9:229–35. {aFHP}Google Scholar
Shatz, C. J. & Stretavan, D. W. (1986) Interactions between retinal ganglion cells during the development of the mammalian visual system. Annual Review of Neuroscience 9:171–207. {aFHP}Google Scholar
Shelton, P. A.Bowers, D. & Heilman, K. M. (1990) Peripersonal and vertical neglect. Brain 113:191–205. {KMH}Google Scholar
Shulman, G. L.Sullivan, M. A.Gish, K. & Sakoda, W. J. (1986) The role of spatial-frequency channels in the perception of local and global structure. Perception 15:259–73. {aFHP}Google Scholar
Siegel, R. M. (1987) Parallel distributed processing that obtains three-dimensional structure from motion. Society for Neuroscience Abstracts 13:630. {RMS}Google Scholar
(1988) Discovery of structure from motion in monkey, man and machine. In: Neural information processing systems, ed. Anderson, D. Z.. American Institute of Physics. {RMS}Google Scholar
(1989) Motion analysis in the inferior parietal area 7a of the rhesus monkey. Society for Neuroscience Abstracts 15:162. {RMS}Google Scholar
Siegel, R. M. & Andersen, R. A. (1987) Representation of head-centered visual space in the inferior parietal lobule of macaque monkey. Neuroscience 22:1293P (Supplement). {RMS}Google Scholar
(1988) Perception of three-dimensional structure from two-dimensional motion in monkey and man. Nature 331:259–61. {RMS}Google Scholar
Singer, W. (1977) Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. Physiological Reviews 57:386420. {aFHP}Google Scholar
Singer, W. (1985) Central control of developmental plasticity in the mammalian visual cortex. Vision Research 25:389–96. {aFHP}Google Scholar
(1985a) Human contrast sensitivity: Regional retinal differences. Human Neurobiology 4:9799. {aFHP}Google Scholar
(1985b) Critical flicker fusion and double flash discrimination in different parts of the visual field. International Journal of Neuroscience 25:225–31. {aFHP}Google Scholar
Skrandies, W. (1987) The upper and lower visual field of man: Electrophysiological and functional differences. In: Progress in sensory physiology (vol. 8), eds. Autrurn, H. et al. Springer-Verlag.Google Scholar
Slavik, B. A. (1982) Vestibular function in children with nonparalytic strabismus. The Occupational Therapy J-ournal of Research 2:220—33. {aFHP}Google Scholar
Sloan, L. L. (1947) Rate of dark adaptation and regional threshold gradient of the dark-adapted eye: Physiologic and clinical studies. American Journal of Ophthalmology 30:705–20. {aFHP}Google Scholar
Smith, A. T. & Hammond, P. (1986) Hemifield differences in perceived velocity. Perception 15:111–17. {arFHP}Google Scholar
Snodderly, D. M. (1979) Visual discriminations encountered in food foraging by a neotropical primate: Implications for the evolution of color vision. In: The behavioral significance of color, ed. Burtt, E.. Garland. {aFHP}Google Scholar
Soper, H. V.Diamond, I. T. & Wilson, M. (1975) Visual attention and inferotemporal cortex in rhesus monkeys. Neuropsychologia 13:409–19. {aFHP}Google Scholar
Soso, M. J.Lettich, E. & Belgum, J. H. (1980) Pattern-sensitive epilepsy II: Effects of pattern orientation and hemifield stimulation. Epilepsia 21:313-23. {aFHP}Google Scholar
Sprague, J. M.Berlucchi, G. & Rizzolatti, G. (1973) The role of the superior colliculus and pretectum in vision and visually guided behavior. In: Handbook of sensory physiology, vol. 7, part 3, ed. Jung, R.. Springer-Verlag. {aFHP}Google Scholar
Stein, J. F. (1989) Representation of egocentric space in the posterior parietal cortex. Quarterly Journal of Experimental Physiology 74:583606. {rFHP}Google Scholar
Steinbach, M. J. (1976) Pursuing the perceptual rather than the retinal stimulus. Vision Research 16:1371–76. {aFHP}Google Scholar
Steinmetz, M. A.Motter, B. CDuffy, C. J. & Mountcastle, V. B. (1987) Functional properties of parietal visual neurons: Radial organization of directionalities within the visual field. Journal of Neuroscience 7:177–91. {arFHP, RMS}Google Scholar
Stone, J. (1983) Parallel processing in the visual system. Plenum. {LMC, RWW}Google Scholar
Strong, G. W. & Whitehead, B. A. (1989) A solution to the tag-assignment problem for neural networks. Behavioral and Brain Sciences 12:381433. {GWS}Google Scholar
Stracl, M.Prevec, T. S. & Zidar, I. (1982) Dependence of visual evoked potentials on change of stimulated retinal area associated with different pattern displacements. Electroencephalography and Clinical Neurophysiology 53:634–42. {aFHP}Google Scholar
Tanaka, K.Hikosaka, K.Saito, H.Yukie, M.Fukada, Y. & Iwai, E. (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. Journal of Neuroscience 6:134–44. {RMS}Google Scholar
Tanaka, K. & Saito, H.-A. (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology 62:626–41. {MK}Google Scholar
Tootell, R. B. H.Silverman, M. S.Hamilton, S. L.De Valois, R. L. & Switkes, E. (1988) Functional anatomy of macaque striate cortex III. Color. Journal of Neuroscience 8:1569–93. {aFHP }Google Scholar
Tootell, R. B. H.Switkes, E.Silverman, M. S. & Hamilton, S. L. (1988) Functional anatomy of macaque striate cortex II. Retinotopic organization. Journal of Neuroscience 8:1531—68. {aFHP}Google Scholar
Treisman, A. M. & Schmidt, H. (1982) Illusory conjunctions in the perception of objects. Cognitive Psychology 14:107–41. {aFHP }Google Scholar
Trevarthen, C. B. (1968) Two mechanisms of vision in primates. Psychologische Forschung 31:299–337. {CJB}Google Scholar
Tusa, R. J.Demer, J. L. & Herdman, S. J. (1989) Cortical areas involved in OKN and VOR in cats: Cortical lesions. Journal of Neuroscience 9:1163–78. {aFHP}Google Scholar
Tusa, R. J., & Palmer, L. A. (1980) Retinotopic organization of areas 20 and 21 in the cat. Journal of Comparative Neurology 193:147–64. {aFHP}Google Scholar
Tychsen, L. (1989) Primary maldevelopment of visual motion pathway in humans. Investigative Ophthalmology & Visual Science 30:302 (Supplement). {aFHP}Google Scholar
Tychsen, L. & Lisberger, S. G. (1986a) Visual motion processing for the initiation of smooth-pursuit eye movements in humans. Journal of Neurophysiology 56:953–68. {aFHP, CJB}Google Scholar
(1986b) Maldevelopment of visual motion processing in humans who had strabismus with onset in infancy. Journal of Neuroscience 6:24952508. {aFHP}Google Scholar
Tyler, C. W. (1987) Analysis of visual modulation sensitivity III. Meridional variations in peripheral flicker sensitivity. Journal of the Optical Society of America A:1612–19. {aFHP}Google Scholar
Tynan, P. & Sekuler, R. (1975) Moving visual phantoms: A new contour completion effect. Science 188:951–52. {aFHP}Google Scholar
Ullman, S. (1979) The interpretation of visual motion. MIT Press. {RMS}Google Scholar
Underwood, G. (1976) Attention and memory. Pergamon. {MPB}Google Scholar
Ungerleider, L. G., & Mishkin, M. (1982) Two cortical visual systems. In: Analysis of visual behavior, ed. Ingle, D. J., Goodale, M. A. & Mansfield, R. J.. MIT Press. [arFHP, MK, CJM, GWS]Google Scholar
Vaina, L. M. (1989) Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans. Biological Cybernetics 61:347–59. [aFHP]Google Scholar
Van Buren, J. M. (1963) The retinal ganglion cell layer. Thomas. [arFHP]Google Scholar
Van Buren, J. M. & Baldwin, M. (1958) The architecture of the optic radiation in the temporal lobe of man. Brain 81:1540. [aFHP]Google Scholar
Van Essen, D. C. (1985) Functional organization of primate visual cortex. In: Cerebral cortex Vol. 3 Visual cortex, ed. Peters, A. & Jones, E. G.. Plenum Press. [RMB]Google Scholar
Van Essen, D. C. & Maunsell, J. H. R. (1983) Hierarchical organization and functional streams in the visual cortex. Trends in Neurosciences 6:370–75. [aFHP]Google Scholar
Van Essen, D. C., Maunsell, J. H. R. & Bixby, J. L. (1981) The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization. Journal of Comparative Neurology 199:293326. [aFHP]Google Scholar
Van Essen, D. C., Newsome, W. T. & Maunsell, J. H. R. (1984) The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vision Research 24:429–48. [aFHP]Google Scholar
Vassilev, A. & Strashimirov, D. (1979) On the latency of human visually evoked response to sinusoidal gratings. Vision Research 19:843–45. [aFHP]Google Scholar
Ventre, J. & Faugier-Grimaud, S. (1986) Effects of posterior parietal lesions (area 7) on VOR in monkeys. Experimental Brain Research 62:654–58. [aFHP]Google Scholar
Von Der Marlsburg, C. & Singer, W. (1988) Principles of cortical network organization. In: Neurobiology of neocortex, ed. Rakic, P. & Singer, W.. Wiley & Sons. [aFHP]Google Scholar
Von Noorden, G. K., Crawford, M. L. J. & Levacy, R. A. (1983) The lateral geniculate nucleus in human anisometropic amblyopia. Investigative Ophthalmology & Visual Science 24:788–90. [aFHP]Google Scholar
Wagman, I. H. (1964) Eye movements induced by electric stimulation of cerebrum in monkeys and their relationship to bodily movements. In: The oculomotor system, ed. Bender, M. B.. Harper & Row. [aFHP]Google Scholar
Walls, G. I. (1942) The vertebrate eye and its adaptive radiation. Cranbrook Press. [RWW]Google Scholar
Warrington, E. K., & James, M. (1967) Disorders of visual perception in patients with localised cerebral lesions. Neuropsychologia 5:253–66. [aFHP]Google Scholar
Warrington, E. K., & Taylor, A. M. (1973) The contribution of the right parietal lobe to object recognition. Cortex 9:152–64. [aFHP]Google Scholar
Wasserstein, J., Zappulla, R., Rosen, J., Gerstman, L. & Rock, D. (1987) In search of closure: Subjective contour illusions, gestalt completion tests, and implications. Brain and Cognition 6:114. [aFHP]Google Scholar
Weinstein, E. A. (1980) Clinical features of hemi-inattention. Behavioral and Brain Sciences 3:518–20. [aFHP]Google Scholar
Weymouth, F. W., Hines, D. C, Acres, L. H., Raaf, J. E. & Wheeler, M. C. (1928) Visual acuity within the area centralis and its relation to eye movements and fixation. American Journal of Ophthalmology 11:947–60. [aFHP]Google Scholar
White, C. A., Champa, L. M., Johnson, D. & Brecha, N. S. (in press) Somatostatin immunoreactive cells in the adult cat retina. Journal of Comparative Neurology. [LMC]Google Scholar
White, C. A., Johnson, D., Chalupa, L. M. & Brecha, N. C. (1988a) Characterization of somatostatin-like immunoreactive cells in the adult cat retina. Society of Neuroscience Abstracts 14:1121. [LMC]Google Scholar
(1988b) Somatostatin immunoreactivity (SRIF-I) in the adult cat retina. Investigative Ophthalmology and Visual Science Supplements 29:196. [LMC]Google Scholar
Whiteside, T. C. D. (1952) Accommodation of the human eye in a bright and empty visual field. Journal of Physiology 118:65P. [rFHP]Google Scholar
Wickler, K. C, Williams, R. W. & Rakic, P. (in press) The photoreceptor mosaic: Number and distribution of rods and cones in the rhesus monkey retina. Journal of Comparative Neurology. [RWW]Google Scholar
Williams, L. G. (1966) The effect of target specification on objects fixated during visual search. Perception & Psychophysics 1:315–18. [aFHP]Google Scholar
Williams, M. C., & Brannan, J. R. (1986) Global precedence in good and poor readers. Paper presented at the annual meeting of the Psychonomic Society, November, New Orleans, LA. [JRB]Google Scholar
Williams, R. W., Cavada, C. & Reinoso-Suarez, F. (1989) Evolutionary plasticity in the feline retino-geniculate system. Society for Neuroscience Abstracts 15:457. [RWW]Google Scholar
Wilson, M. E., & Toyne, M. J. (1970) Retino-tectal and cortico-tectal projections in Macaca mulatta. Brain Research 24:395406. [aFHP]Google Scholar
Wilson, H. R., & Giese, S. C. (1977) Threshold visibility of frequency gradient patterns. Vision Research 17:1177–90. [JRB]Google Scholar
Wilson, M., Wilson, W. A. Jr. & Remez, R. (1977) Effects of prestriate, inferotemporal and superior temporal sulcus lesions on attention and gaze shifts in rhesus monkeys. Journal of Comparative and Physiological Psychology 91:1261–71. [aFHP ]Google Scholar
Wolfe, J. M., & Franzel, S. L. (1988) Binocularity and visual search. Perception & Psychophysics 44:8193. [aFHP]Google Scholar
Woodworth, R. S. (1938) Experimental psychology. Holt & Co. [aFHP]Google Scholar
Yasuma, T., Miyakawa, N. & Yamazaki, J. (1986) Clinical application of time-dependent perimetry I. Results in normal subjects. Japanese Journal of Ophthalmology 30:330–37. [aFHP]Google Scholar
Yazulla, S. (1974) Intraretinal differentiation in the synaptic organization of the inner plexiform layer of the pigeon retina. Journal of Comparative Neurology 153:309–24. [MAG]Google Scholar
Yin, R. K. (1969) Looking at upside-down faces. Journal of Experimental Psychology 81:141–45. [rFHP]Google Scholar
Young, L. R., & Oman, C. M. (1974) Influence of head position and field on visually induced motion effects in three axes of rotation. In: Proceedings of the Tenth Annual Conference on Manual Control. Wright-Patterson Air Force Base, OH. [aFHP]Google Scholar
Yund, E. W., Efron, R. & Nichols, D. R. (1990) Detectability gradients as a function of target location. Brain and Cognition 12:116. [rFHP]Google Scholar
Zalutsky, R. A., & Miller, R. F. (1987) The physiology of somatostatin in the rabbit retina. Society for Neuroscience Abstracts 13:380. [LMC]Google Scholar
(1988) Neuropeptide mechanisms in the rabbit retina. Investigative Ophthalmology and Visual Science Supplements 29:271. [LMC]Google Scholar
Zee, D. S., Yamazaki, A., Butler, P. H. & Gucer, G. (1981) Effects of ablation of flocculus and paraflocculus on eye movements in primates. Journal of Neurophysiology 46:878–99. [aFHP]Google Scholar
Zeki, S. (1980) The representation of colours in the cerebral cortex. Nature 284:412–18. [aFHP]Google Scholar
Zeki, S. M. (1973) Colour coding in rhesus monkey prestriate cortex. Brain Research 53:422–27. [MK]Google Scholar
(1977) Colour coding in the superior temporal sulcus of rhesus monkey visual cortex. Proceedings of the Royal Society, series B 197:195–223. [MK]Google Scholar
Zihl, J., von Cramon, D. & Mai, N. (1983) Selective disturbance of movement vision after bilateral brain damage. Brain 106:313–40. [aFHP]Google Scholar
Zipser, D. & Andersen, R. A. (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331:679–84. [rFHP, RMS]Google Scholar